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We demonstrate the controlled spatiotemporal transfer of transverse orbital angular momentum (OAM)
to electromagnetic waves: the spatiotemporal torquing of light. This is a radically different situation from
OAM transfer to longitudinal, spatially defined OAM light by stationary or slowly varying refractive-index
structures such as phase plates or air turbulence. We show that net transverse OAM per photon can be
spatiotemporally imparted to a light pulse only if (1) a transient phase perturbation is well overlapped with
the pulse in spacetime, or (2) the pulse initially has nonzero transverse OAM density, and the perturbation
removes energy from it. Physical insight is provided by the mechanical analogy of torquing a wheel or
removing mass as it spins. Our OAM theory for spatiotemporal optical vortex (STOV) pulses [S. W.
Hancock et al.,Phys. Rev. Lett. 127, 193901 (2021)] correctly quantifies the light-matter interaction of our
experiments and provides a spatiotemporal-torque-based explanation for the first measurement of STOVs
[N. Jhajj et al., Phys. Rev. X 6, 031037 (2016)].
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I. INTRODUCTION

The study of light carrying longitudinal orbital angular
momentum (OAM) has seen a rapid increase in activity
since it was realized that Laguerre-Gaussian (LGpm) modes
with integer radial and azimuthal indices p and m have an
OAM of mℏ per photon directed parallel or antiparallel to
the propagation axis [1]. Whether or not the OAM content
was directly important to applications, OAM-carrying light
has found uses in areas such as optical trapping [2],
superresolution microscopy [3], high-harmonic generation
[4], and generation of long air waveguides [5] and plasma
waveguides [6]. Other proposed uses of longitudinal OAM
beams include free-space communications [7,8], quantum-
key distribution [9], and generation of large magnetic fields
in intense laser-plasma interaction [10].
That a light pulse could carry an embedded OAM

oriented transverse to its propagation direction was first
revealed in a high-field nonlinear optics experiment [11].
The transverse OAM density was carried by spatiotemporal
optical vortices (which we dubbed “STOVs”)—vortices
embedded in spacetime—generated by the extreme spatio-
temporal phase shear produced in the filamentation and
self-guiding of intense femtosecond laser pulses in air [11].

STOVs are naturally emergent and necessary electromag-
netic structures that govern optical-energy-density flow
during self-guided propagation and are a universal conse-
quence of any arrested self-focusing process such as
relativistic self-guiding in plasmas [12], all of which
involve extreme spatiotemporal phase shear. As they are
carried by short pulses and are of finite duration, these
structures are necessarily polychromatic [13]. The realiza-
tion that STOVs were generated by phase shear in space-
time [11] led to a method to generate them linearly and
controllably, using a 4f-pulse shaper device to apply shear
in the spatiospectral domain and then return the pulse to the
spatiotemporal domain [14–16]. A new single-shot diag-
nostic, TG-SSSI (transient-grating single-shot supercontin-
uum spectral interferometry) [17] captured the free-space
propagation of pulse-shaper-generated STOV pulses from
the near field to the far field with respect to the shaper. Later
work used a similar pulse shaper to generate STOVs
measured in the far field only [18]. In further work,
experiments demonstrating OAM conservation under sec-
ond-harmonic generation [19–21] verified that transverse
OAM is carried by photons. This was an important step
because, unlike for a pulse with longitudinal OAM, the
spatiotemporal phase winding of a STOV pulse can flip
sign or vanish, making it initially less obvious that it carries
transverse OAM [22]. Since then, research on STOVs
has accelerated, including alternative methods for STOV
generation [23–26], investigations of high-harmonic
STOV photons from gases and solids [27,28], as well as
demonstration of spatiotemporal acoustic vortices [29,30].
We note that STOVs are distinct from stationary,
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nonpropagating transverse angular momentum structures,
which can be monochromatic [31,32].
Despite the rapidly increasing experimental activity

studying STOVs, there had been no theoretical analysis
of their OAM content until recently [22,33,34], where our
result [22] determined that STOV-based intrinsic OAM
must take half-integer values, and the other claiming that
only integer values are allowed [33,34]. This difference is
more than just an academic question, as it quantifies the
exchange of transverse OAM in light-matter interactions.
Such interactions, the subject of this paper, are a key
building block of future applications of STOVs.
Interactions of longitudinal OAM-carrying beams with

matter have long been studied. One early example is the
interaction of an LG0m Laguerre-Gaussian donut modewith
a macroscopic particle causing it to rotate about the OAM
axis [35]. The converse of this process can be viewed as the
torquing of light, in which a light beam gains or loses OAM
from an interaction with matter. A simple example of this is
the pickup of OAM by a beam passing through a spiral
phase plate [5] or any refractive-index structure that imparts
a nonzero azimuthal phase shift about the propagation axis.
For example, LG0m donut beam propagation through a
turbulent atmosphere leads to an output beam carrying a
spectrum of longitudinal OAM states m;m� 1; m� 2;…
[7,36] owing to the random azimuthal phase shifts
picked up over the propagation range. In all of these cases,
the OAM beam can be CW and monochromatic, with the
refractive-index structures static on the timescale of the
beam evolution: Such torquing of light makes preservation
of pure longitudinal OAM states difficult.
In this paper, we present the first experimental evidence of

the controlled spatiotemporal transfer of transverse OAM to
light bymatter: the spatiotemporal torquing of light. This is a
radically different situation from the torquing of longitudinal,
spatially defined OAM light by stationary or slowly varying
refractive-index structures such as phase plates or air turbu-
lence. We demonstrate that transverse OAM of a light pulse
can be changed only for transient phase perturbations well
overlapped with the pulse in spacetime, or by removing
energy from a pulse already containing nonzero transverse
OAM density. We explore the physics of what constitutes an
optimal overlap. Furthermore, we experimentally verify our
“half-integer” theoryof intrinsic STOVOAM[22]; the theory
is crucial to correctly quantifying the light-matter interaction
of this experiment. We also make a connection with the first
measurement of STOVs [11], providing a spatiotemporal-
torque-based explanation for their generation.

II. DETERMINING CHANGES IN TRANSVERSE
ORBITAL ANGULAR MOMENTUM

The perturbation-induced change in the orbital angular
momentum of an optical pulse can be determined from
measurements of the amplitude and phase of the pulse
before and after the perturbation. For the well-known case

of pulses with longitudinal OAM, say, along ẑ, the
procedure is straightforward: If the pre- and postperturba-
tion complex electric fields are Es and Esp, then the change
in longitudinal OAM per photon can be computed as
ΔhLzi¼hLzisp−hLzis¼u−1sp hEspjLzjEspi−u−1s hEsjLzjEsi,
where Lz ¼ ðr × p̂Þz ¼ −iðx∂=∂y − y∂=∂xÞ is the longi-
tudinal OAM operator, with linear momentum operator
p̂¼−i∇. Here, the expectation values of Lz for the pre- and
postperturbation fields are hLzis;sp¼u−1s;sphEs;spjLzjEs;spi¼
u−1s;sp

R
d3rE�

s;spLzEs;sp, with normalizations us;sp ¼
hEs;spjEs;spi ¼

R
d3rjEs;spj2, and the integrals taken over

all space with d3r ¼ dxdydz. In order to ensure, in general,
that ΔhLzi is purely intrinsic OAM, the origin must be
taken as the energy-density centroid (or “center of
energy”). The question of choice of origin in OAM
calculations is discussed in Appendix A.1.
The same result for the intrinsic OAM as in the

operator-based calculation is obtained by directly integrat-
ing the OAM density [1,37] of the fields: ΔhLzi ¼
2k0U−1

sp

R
d3r½ðr− rspÞ× ðEsp ×H�

spÞ�z − 2k0U−1
s

R
d3r×

½ðr− rsÞ×ðEs ×H�
s Þ�z, where rs;sp¼U−1

s;sp

R
d3r rðjEs;spj2 þ

jHs;spj2Þ are the respective pulse centers of energy,
Us;sp ¼

R
d3rðjEs;spj2 þ jHs;spj2Þ, Hs;sp is the magnetic

field, and k0 is the wave number of the fields, which
can be monochromatic. Here we assume propagation in a
dilute, nonmagnetic material with index of refraction
satisfying ReðnÞ ≅ 1.
Likewise, for changes in intrinsic transverse spatiotem-

poral OAM, an operator-based calculation should agree
with a direct field-based calculation using the transverse
OAM density. That is, if Es and Esp are pre- and
postperturbation ŷ-polarized pulses propagating along ẑ
with transverse OAM oriented along ŷ (ensuring no effects
of spin angular momentum), the change in intrinsic trans-
verse OAM per photonΔhLyi should be calculable either as

ΔhLyi ¼ hLyisp − hLyis
¼ u−1sp hEspjLyjEspi − u−1s hEsjLyjEsi ð1aÞ

or ΔhLyi¼ 2k00U
−1
sp

Z
d3r0½ðr0− r0spÞ× ðEsp ×H�

spÞ�y

−2k0U−1
s

Z
d3r0½ðr0−r0sÞ× ðEs ×H�

s Þ�y; ð1bÞ

provided that the correct Ly operator is used in Eq. (1a) and
the origin is the spacetime center of energy. In Eq. (1b), r0
refers to spacetime coordinates of the pulse (see below)
us;sp ¼

R
d3r0jEs;spj2, Us;sp ¼

R
d3r0ðjEs;spj2 þ jHs;spj2Þ,

and r0s;sp¼U−1
s;sp

R
d3r0r0ðjEs;spj2þjHs;spj2Þ are the space-

time centers of energy. Because STOV pulses are poly-
chromatic [22], here k0 is the central wave number,
and k00 accommodates a central wave-number shift in a
spatiotemporally perturbed pulse. For weak perturbations
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k00 ¼ k0, and for negligible absorption or backscattering
(see Sec. III) Usp ¼ Us (and usp ¼ us). Our experimental
perturbations satisfy both these conditions. The expres-
sions in Eq. (1) also assume nonmagnetic material and
ReðnÞ ≅ 1, the conditions of our experiments.
As indicated, care must be taken in determining the form

of the spatiotemporal OAM operator Ly. Unlike longi-
tudinal OAM Lz, whose physical origin is the circulation of
electromagnetic energy density around the z axis in both x
and y dimensions, energy-density flow in a ẑ-propagating
STOV pulse in vacuum, with OAM along ŷ, can occur only
along�x: If any vortex-associated flow occurred along z, it
would be superluminal or subluminal above or below the
vortex singularity (depending on the sign of the STOV),
violating special relativity. In recent work [22], we found a
transverse spatiotemporal OAM operator expressed in
spacetime rectangular coordinates,

Ly ¼ ðr0 × p̂STÞy ¼ −i
�
ξ
∂

∂x
þ β2x

∂

∂ξ

�
; ð2Þ

which applies in a dispersive optical material. Here, ξ ¼
vgt − z is a space coordinate relative to the peak of the
pulse moving at group velocity vg, t and z are time and
propagation distance in the lab frame, β2 ¼ v2gk0k000 is the
dimensionless group velocity dispersion of the material,
k000 ¼ ð∂v−1g =∂ωÞk0 , and p̂ST¼−i∇ST¼−ið∇⊥− ξ̂β2∂=∂ξÞ
is the spatiotemporal linear momentum operator [22]. For
later use in this paper, a lab-frame time interval relative to
the pulse center is defined as τ ¼ ξ=vg ¼ t − z=vg. In
performing the integrals in Eqs. (1a) and (1b), d3r0 ¼
dydxdξ in spacetime rectangular coordinates. Here we use
rectangular coordinates because our measured complex
fields are recorded as rectangular data arrays (see Sec. IV).
Our Ly operator is consistent with special relativity, it

conserves electromagnetic energy-density flux, and it is con-
servedwithpropagation:d=dzhLyi ¼ ið2k0Þ−1h½H;Ly�i ¼ 0

[22]. Here, ½H;Ly� ð¼ 0Þ is the commutator of Ly and the
propagation operator H ¼ −∇2⊥ þ β2∂

2=∂ξ2 from the
spacetime paraxial wave equation 2ik0∂Aðr⊥; ξ; zÞ=∂z ¼
HAðr⊥; ξ; zÞ for the field A. In ðr⊥; ξ; zÞ coordinates, z
plays the role of a timelike running parameter; this is noted
by its separation by a semicolon [22]. The transverse OAM
operator Ly is also conserved under nonparaxial propaga-
tion (see Appendix A.2). It is important to emphasize here
that the expectation value hLyi is conserved with propa-
gation irrespective of the origin chosen for its evaluation.
For a general choice of origin, hLyi is a sum of intrinsic and
extrinsic OAM contributions. Only when the origin is
chosen to be the center of energy does the extrinsic
contribution vanish, leaving hLyi as the purely intrinsic
OAM carried by photons (see Appendix A.1). Recently,
another theory for intrinsic transverse OAM has been

presented [33,34]; Appendix A.3 compares that approach
to our theory [22] and the experiments of this paper.
To illustrate how STOVs propagate and to provide

definitions for parameters used later in this paper,
Fig. 1(a) reproduces results from Ref. [22], where a
STOV pulse of topological charge l ¼ 1 and spacetime
asymmetry ratio α ¼ w0ξ=w0x ¼ 0.24 propagates right to
left in air from z=z0x ¼ −0.41 to z=z0x ¼ 0.24, and right to
left within each panel. Here, w0ξ and w0x are timelike and
spacelike Gaussian spatial scales of the pulse, and z0x ¼
k0w2

0x=2 is the spacelike Rayleigh range. The top two rows
are spatiotemporal intensity and phase profiles from the
analytic modal STOV theory of Ref. [22], and the bottom
rows are the corresponding experimental intensity and
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FIG. 1. Illustrative figure of STOV pulse propagation for
spacetime asymmetry ratio α ¼ w0ξ=w0x ¼ 0.24, with z0x ¼
1
2
k0w2

0x ¼ 4.5 cm (a) Top two rows: modal theory [22] plots
of spatiotemporal intensity and phase of l ¼ 1 STOV pulse
propagating right to left through its beam waist from z=z0x ¼−0.41 to z=z0x ¼ 0.24 (and right to left within each panel).
Bottom two rows: experimental intensity and phase plots ex-
tracted by TG-SSSI. (b) Lineouts along ð0; ξÞ and ðx; 0Þ of the
experimental intensity profile at z=z0x ¼ 0.02 (solid lines) and
fits to the modal theory curves (dashed lines).
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phase profiles jEsðx; ξÞj2 and ϕsðx; ξÞ ¼ arg½Esðx; ξÞ� cap-
tured by TG-SSSI [17], where the Gaussian y dependence
of the field is not displayed, as it remains unaffected in our
experiments and computations. For the room air of the
experiments of Ref. [22], as well as in the experiments of
this paper, β2 ≅ 1.5 × 10−5. This small dispersion has a
negligible effect over short air-propagation distances, so for
all analyses in Ref. [22] and here, β2 ¼ 0 and the transverse
OAM operator is Ly ¼ −iξ∂=∂x. Note that without the
gradient in ξ enabled by nonzero β2, this operator cannot
transport energy density along �ξ; it is transported only
along �x. As seen in Fig. 1(a), spatial diffraction along �x
causes the donut shape near z ¼ 0 to evolve to lobed
structures with opposite spacetime tilt on either side of
z ¼ 0, while the transverse OAM is conserved throughout
propagation.
For a STOV pulse of topological charge l and spacetime

asymmetry ratio α propagating in a dispersive medium
characterized by β2, Ref. [22] shows that the expectation
value of transverse OAM is hLyi ¼ 1

2
lðα − β2=αÞ, so

that for the air-propagating STOV pulse in Fig. 1, hLyi ¼
1
2
lα ¼ 0.12. The factor of 1=2 for the spacetime vortex is

a direct result of energy-density circulation restricted
to �x.

III. SPATIOTEMPORAL TORQUE

The goals of our experiments are to (1) explore how
spatiotemporal perturbations to electromagnetic fields
affect transverse OAM, and (2) verify the correctness of
our theoretical approach [22]. For these purposes, it is first
useful to introduce the notion of spatiotemporal torque.
For an initial pulse Asðx; ξÞ ¼ jAsðx; ξÞjeiϕsðx;ξÞ and a

spatiotemporal perturbation Γðx; ξÞ ¼ jΓðx; ξÞjeiΔϕpðx;ξÞ,
where ϕsðx; ξÞ and Δϕpðx; ξÞ are real functions, the
perturbed pulse is Aspðx; ξÞ ¼ Γðx; ξÞAsðx; ξÞ. This formu-
lation assumes that the perturbation does not backscatter
light into the pulse; this condition is well satisfied by
sufficiently weak perturbations, including those of our
experiments, and by perturbations that effectively remove
energy from the pulse. We take As and Asp to be polarized
along ŷ so there are no effects of spin angular momentum.
The change of transverse OAM per photon from the
perturbation is then (see Appendix A.4)

ΔhLyi ¼ hLyisp − hLyis
¼ iu−1sp

Z
dx dξ

�
jAsj2jΓj2LyΔϕp

þ jAsj2
�
jΓj2 − usp

us

�
Lyϕs

�
; ð3Þ

where usp ¼
R
dx dξAsðx; ξÞj2jΓðx; ξÞj2.

Equation (3) is intuitively appealing. The first term in the
integral suggests the notion of “spatiotemporal torque,”

where the change in OAM is given by an effective force-
lever arm product iLyΔϕp ¼ ξ∂Δϕp=∂xþ β2x∂Δϕp=∂ξ
weighted by the energy-density distribution jAspðx; ξÞj2 ¼
jΓðx; ξÞAsðx; ξÞj2 of the torqued object. Here the “force”
components are ∂Δϕp=∂x and β2∂Δϕp=∂ξ, and the lever arm
components are ξ and x. A mechanical analogy for the
integral’s second term is the change in OAM caused by
location-specific mass removal from a spinning wheel. For
cases where energy is removed from the pulse by absorption
or scattering, usp=us < 1, and the second term contributes to
the change in OAM provided that the initial pulse has
nonzero transverse OAM density Myðx; ξÞ ¼ A�

sLyAs ¼
ijAsj2Lyϕs; otherwise, Lyϕs ¼ 0 and the second term van-
ishes. Effectively, the wheel must already be “spinning” for
mass removal to changeOAM.Note that the second termwill
vanish, irrespective of ϕs, in the case of a pure phase
perturbation where jΓj ¼ 1 and usp=us ¼ 1. This type of
perturbation corresponds to our experiments.
Further examination of Eq. (3) leads to several insights:

(a) Pure amplitude perturbations (with Δϕp ¼ 0) that
conserve pulse energy cannot change the transverse
OAM per photon of a light pulse; in that case, Γðx; ξÞ
can be viewed as a scattering coefficient that redistributes
pulse energy over �x. (b) Steady-state (∂Δϕp=∂ξ ¼ 0) or
spatially uniform (∂Δϕp=∂x ¼ 0) phase perturbations do
not change transverse OAM. (c) The only ways to change
transverse OAM per photon are (i) for either or both of the
effective force terms ∂Δϕpðx; ξÞ=∂x and β2∂Δϕpðx; ξÞ=∂ξ
to be time varying and have an asymmetric temporal
overlap with the energy-density distribution (across the
pulse’s temporal center of energy) or (ii) for energy to be
removed from selected spatiotemporal locations in a pulse
containing transverse OAM density. In all cases, the
spatiotemporal location of the perturbation determines
the change in transverse OAM per photon. In atmospheric
density gases, β2 is negligible and ∂Δϕpðx; ξÞ=∂x is the
dominant contribution to the first term of Eq. (3).
To provide physical insight in advance of discussing the

experiment, we consider a simple step-function perturba-
tion model. The model corresponds well to our experiments
(see Sec. IV) and also provides significant interpretative
insight for the first experiment to measure STOVs [11] (see
Appendix A.5). We apply the spacetime perturbation
Γðx; ξÞ ¼ jΓðx; ξÞjeiΔϕpðx;ξÞ, with jΓðx; ξÞj ¼ 1 and

Δϕpðx; ξÞ ¼ Δϕp0½Θðx − x0 þ hÞ − Θðx − x0 − hÞ�
× Θðξ − ξ0Þ ð4Þ

to either a Gaussian pulse AGðx; ξÞ, or to a l ¼ 1 STOV
pulse ASTOVðx; ξÞ:

AGðx; ξÞ ¼ A0 expð−x2=w2
0x − ξ2=w2

0ξÞ; ð5aÞ

ASTOVðx; ξÞ ¼ ðξ=w0ξ þ ix=w0xÞAGðx; ξÞ: ð5bÞ
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Here, ΘðqÞ is the Heaviside function, 2h is the spatial width
of the perturbation centered at x ¼ x0, and the perturbation
turns on at ξ ¼ ξ0 (or τ ¼ τ0). The choice of a phase-only
perturbation (jΓðx; ξÞj ¼ 1) corresponds to our experimental
perturbation (see Sec. IV). The spacelike and timelikewidths
of theGaussian pulse arew0x andw0ξ, and the expressions for

AG and for ASTOV are accurate for z ≪ z0x ¼ k0w2
ox=2 [22].

Because transverse OAM is conserved with z, it is sufficient
to use these expressions [Eq. (5)] in our calculations. Using
Eq. (1a) with initial fields AG or ASTOV, the simple perturba-
tion model produces analytic solutions for ΔhLyiG and
ΔhLyiSTOV as a function of ðx0; ξ0Þ:

ΔhLyiG ¼ Δϕp0

2π

�
αþ β2

α

��
exp

�
8hx0
w2
0x

�
− 1

�
exp

�
− 2ðhþ x0Þ2

w2
0x

− 2ξ20
w2
0ξ

�
; ð6aÞ

ΔhLyiSTOV ¼ Δϕp0

2π

�
αþ β2

α

�
exp

�
− 2ðhþ x0Þ2

w2
0x

− 2ξ20
w2
0ξ

�

×
��

exp
�
8hx0
w2
0x

�
− 1

��
1þ 2

h2 þ x20
w2
0x

þ 2
ξ20
w2
0ξ

�
− 4hx0

w2
0x

�
exp

�
8hx0
w2
0x

�
þ 1

��
: ð6bÞ

Figures 2(a) and 2(b) plot ΔhLyiG and ΔhLyiSTOV vs
ðx0; ξ0Þ. Each panel is for a particular half-width h=wox and
normalized dispersion β2, where β2 ¼ �1 is for dense,
positively, or negatively dispersive media, and β2 ¼ 0
corresponds to low-density media such as air, the propa-
gation medium of our experiment. Plots using the
dispersion of air β2 ≅ 1.5 × 10−5 are indistinguishable
from those using β2 ¼ 0.
We first discuss the β2 ¼ 0 plots (the plots for the β2 ¼ 1

cases are qualitatively similar). Figure 2(a) shows the
transfer of transverse OAM to AG, a pulse with zero initial
OAM. Maximum OAM transfer occurs for x0 located at the
spatial edges of the pulse (x0 ∼�w0x) and for ξ0 located

near the pulse center (ξ0 ∼ 0). As discussed earlier in the
context of Eq. (3), these optimum zones of ðx0; ξ0Þ
maximize the overlap of the force-lever arm product with
the torqued pulse energy density. Importantly, the pertur-
bation transient [here, the step Θðξ − ξ0Þ] must overlap
with the pulse so that the torque contributions are imbal-
anced across the temporal center of energy at ξ ¼ 0. For
Θðξ − ξ0Þ located outside the region of the pulse (for
jξ0=w0ξj > ∼1), ΔhLyi → 0 because the pulse sees the
perturbation as steady state. The effect on ΔhLyi of a time-
and space- localized spatiotemporal torque is described in
Appendix A.6, supporting the analogy of mechanical
torque on a wheel.
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FIG. 2. Plots of analytic solutions [Eqs. (6a) and (6b)] of ΔhLyi vs ðx0; ξ0Þ for the spatiotemporal phase shift Δϕpðx; ξÞ of Eq. (4)
applied to (a) a Gaussian pulse AGðx; ξÞ [Eq. (5a)] and to (b) an l ¼ 1 STOV pulse ASTOVðx; ξÞ [Eq. (5b)]; x0 and ξ0 are the central space
location and turn-on time of the perturbation. In Eq. (4), we choose Δϕp0 ¼ −0.5 to model the plasma generated by optical field
ionization (OFI) of air.
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The effect of the perturbation on an l ¼ 1 STOV pulse is
plotted in Fig. 2(b). Based on our prior discussion, it is not
surprising that the plots are qualitatively similar to those
for l ¼ 0 in Fig. 2(a), with similar values of maximum
OAM transfer jΔhLyijmax. For a phase perturbation with
jΓðx; ξÞj ¼ 1, Eq. (3) shows that ΔhLyi does not depend on
ϕsðx; ξÞ, the phase winding of the initial pulse. Detailed
differences between Figs. 2(a) and 2(b) arise from the differ-
ent energy-density distributions jAsðx; ξÞj2 for Gaussian
and STOV pulses.
For β2 ¼ −1, ΔhLyi ¼ 0 in all cases. In such a neg-

atively dispersive material, the spatiotemporal pulse shape
is preserved because the dispersion in time matches the
amplitude and sign of diffraction in space. The effect of any
spatiotemporal torque applied to the pulse is zero, because
the effective forces applied at the end of the lever arm are
balanced.
We now address the effect of a non-energy-conserving

pure amplitude perturbation on pulses with and without
initial transverse OAM. We place the perturbation
Γðx; ξÞ ¼ 1 − exp½−ðx=hÞ8� at the beam waist (z ¼ 0) of
l ¼ 1 STOV and Gaussian pulses described by Eqs. (5a)
and (5b), with w0x ¼ w0ξ ¼ 100 μm, and 2h ¼ 100 μm.
This models a steady-state obstruction in the pulse propa-
gation path such as a solid wire of diameter 2h centered at
x ¼ 0, which would remove pulse energy by a combination
of scattering and absorption. Shown in Fig. 3(a) are the
unperturbed spatiotemporal intensity profiles Isðx; ξÞ ¼
jEsðx; ξÞj2 for the STOV and Gaussian pulses at
z ¼ 0− followed by the perturbed pulses Ispðx; ξÞ ¼
jEspðx; y ¼ 0; ξ; zÞj2 propagating from z ¼ 0 to z ¼ 2z0x.
These are computed by forward-propagating the electric
and magnetic fields Espðx; y; ξ; zÞ and Hspðx; y; ξ; zÞ from
z ¼ 0 using our unidirectional pulse propagation code
YAPPE (yet another pulse propagation effort) (see
Appendix B). The z-dependent change in transverse
OAM ΔhLyiz is calculated directly from the fields using
Eq. (1b) and plotted in Fig. 3(b) as points every 0.1z0x. In
both cases, as expected, ΔhLyiz remains constant after the
perturbation, owing to the conservation of Ly. It is seen that
only the STOV pulse has its transverse OAM per photon
changed. This is predicted by Eq. (3): The second term
contributes only if Lyϕs ≠ 0 [the first term in Eq. (3) is zero
because this is a pure amplitude perturbation]. Note that
even though the perturbation is on the beam axis at x ¼ 0,
ΔhLyi is still nonzero because energy is removed from the
pulse at a specific location, imposing a new spatiotemporal
distribution of the remaining energy and thus a new
transverse OAM per photon. Changing the x position of
the wire will change ΔhLyi through new spatiotemporal
distributions of the remaining energy. The constant solid
line overlaid on the points is determined by a calculation of
ΔhLyiz¼0

using Eq. (1a) and agrees with the direct field
calculation.

To conclude this section, it is important to make a
connection to the generation of transverse OAM-carrying
pulses using our 4f-pulse shaper [14–16]. The shaper is a
complex device that generates STOVs by applying torque
in the spatiospectral domain to zero-OAM Gaussian input
pulses. One realization of the pulse shaper has a π-step
phase plate in its Fourier [ðx;ωÞ� plane and generates
donut-shaped STOV pulses in the near field [16]. The phase
jump in the ðx;ωÞ plane Δφpðx;ωÞ ¼ arg½Ẽspðx;ωÞ�,
where Ẽsp is the time Fourier transform of the shaper-
perturbed pulse, plays a role analogous to the phase change
Δϕpðx; ξÞ in the spatiotemporal domain. However, because
we exist in a spatiotemporal rather than a spatiospectral
world, with clocks marking time as the dynamical running
parameter, it is spatiotemporal perturbations that naturally
appear in light-matter interactions. It is spatiotemporal
perturbations that are the subject of this paper.

IV. EXPERIMENTAL SETUP

The physical insight provided by the calculations of
Sec. III led to our experimental design. To impart a
spatiotemporal torque on an optical pulse via a perturbation
Γðx; ξÞ ¼ jΓðx; ξÞjeiΔϕpðx;ξÞ, we impose a spatiotemporal
refractive-index perturbation in the propagation medium.
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FIG. 3. Effect of a non-energy-conserving pure amplitude
perturbation Γðx; ξÞ ¼ 1 − exp½−ðx=hÞ8� on pulses with and
without transverse OAM. (a) Preperturbation l ¼ 1 STOV and
Gaussian pulse intensities jEsðx; ξÞj2 at z ¼ 0−, followed by the
pulse intensity evolution jEspðx; y ¼ 0; ξ; zÞj2 from z ¼ 0 to
z¼2z0x determined by E and H field propagation computed
by YAPPE (Appendix B). Here, 2h ¼ 100 μm and w0x ¼ w0ξ ¼
100 μm. (b) Change in transverse OAM per photon vs z (ΔhLyiz)
for the Gaussian and STOV pulses calculated directly from the
fields using Eq. (1b) (points) and calculated using Eq. (1a)
(solid lines).
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This is accomplished by using a separate pulse to generate
an ultrafast optical-field ionization (OFI) air plasma at a
controllable spacetime location; we call this spatiotemporal
structure a “transient wire.” As borne out by measurements
and propagation simulations, the low-density plasma in the
transient wire is dominantly a phase perturbation, with
negligible energy removed from the pulse, effectively
jΓðx; ξÞj ¼ 1. The transient wire has an ultrafast rise time
and a narrow spatial width governed by the OFI rate, and a
long lifetime governed by nanosecond-timescale recombi-
nation: The spatiotemporal phase shift Δϕpðx; ξÞ is there-
fore well described by Eq. (4) or by a more realistic
perturbation with smoothed step transitions

Δϕpðx; ξÞ ¼
1

2
Δϕp0f1þ erf½

ffiffiffi
2

p
ðξ − ξ0Þ=hξ�g

× expf−½ðx − x0Þ=hx�8g; ð7Þ

where the exponent 8 corresponds to the number of 800-nm
photons for multiphoton ionization of air, specifically
oxygen. (Pure amplitude perturbations are investigated
with simulations in Fig. 3.)
Figure 4 is a schematic diagram of the transient wire

experiment; a more detailed diagram is presented in
Appendix C. Pulse Es (red beam), either a Gaussian or
l ¼ 1 STOV pulse from a 4f-pulse shaper [14–16],
propagates through air and is intersected by a focused
secondary pulse ETW (blue beam) which generates an
ultrafast-rise-time OFI plasma—the transient wire—at an
adjustable spacetime location with respect to Es. After the
interaction, the perturbed pulse Esp is relay imaged from
3 mm past the interaction plane (to avoid nonlinear
distortion in the imaging) to our TG-SSSI diagnostic
[17], which extracts its spatiotemporal amplitude and
phase. With ETW turned off, TG-SSSI measures the
spatiotemporal amplitude and phase of the unperturbed
pulse Es. Five synchronized beams are needed for this
experiment, which are obtained by splitting the output
beam of a 1-kHz repetition-rate Ti:sapphire laser

(λ0 ¼ 800 nm, 40 fs) to give (1) an input pulse to the
4f-pulse shaper, with output pulse Es (9.5 μJ, variable
pulse width), (2) a focused transient wire beam ETW
(250 μJ, 40-fs FWHM, spot size wTW ¼ 40 μm) that
intersects the Es beam at θ ¼ 18.5°, and (3) three pulses
for TG-SSSI: twin probe and reference supercontinuum
(SC) pulses Epr and Eref (with bandwidth ΔλSC ∼ 160 nm
centered at λSC ¼ 630 nm) plus a spatial interferometry
reference pulse Ei (5.5 μJ after 3-nm bandpass filter
centered at 800 nm). The angle θ ¼ 18.5° is chosen to
allow angular separation of the beams to direct Esp to the
TG-SSSI diagnostic, and for sufficient spatial overlap of
Δϕpðx; ξÞ along the propagation path of Es.

V. RESULTS AND DISCUSSION

An example of the transient wire perturbation of an l ¼ 1
STOV pulse Esðx; τÞ is shown in Fig. 5, where here we use
the time coordinate relative to the pulse center τ ¼ ξ=vg,
and ðx; τÞ ¼ ð0; 0Þ is taken as the spatiotemporal energy
center of Es. Figures 5(a)–5(c) show, respectively, the
unperturbed l ¼ 1 STOV pulse intensity jEsj2 (ETW off),
the perturbed pulse intensity jEspj2 (ETW on), and the
transient-wire-induced phase shift Δϕpðx; τÞ ¼ argðEspÞ−
argðEsÞ, all extracted using TG-SSSI [16,17]. The overlaid
dashed red line shows the x location of the perturbation,
which is placed near the top of Es (at x0 ¼ 120 μm) to
obtain appreciable ΔhLyi, as motivated by the simulations
in Fig. 2(b). The plots represent a Δy ∼ 10 μm slice of Es
and Esp in the y direction, normal to the x-τ plane of the
plots, where Δy is the width of the imaging spectrometer
slit used in TG-SSSI (see Ref. [17] and Appendix C).
From Fig. 5(c), the maximum phase shift induced by the

OFI plasma is Δϕp0 ¼ −0.45, where ETW was delayed so
that the half-maximum phase shift Δϕp0=2, which defines
the perturbation onset time τ0, occurred for τ0 ¼ 0. From
nonlinear least-squares fitting of measured Δϕpðx; τÞ to
Eq. (7), we extract the phase-shift rise time hτ ¼ hξ=vg ∼
44 fs and spatial half-width at 1=e maximum hx ∼ 40 μm

FIG. 4. Configuration for measuring the effect of a transient phase perturbation on field Es (from a 4f -pulse shaper) imposed by the
ultrafast OFI plasma induced by field ETW. This OFI plasma is the transient wire. The perturbed pulse Esp and unperturbed pulse Es

(ETW off) are measured by TG-SSSI [17]. The angle between the beams is θ ¼ 18.5°. A detailed experimental diagram is shown in
Appendix C.

SPATIOTEMPORAL TORQUING OF LIGHT PHYS. REV. X 14, 011031 (2024)

011031-7



with data lineouts overlaid with fits in Figs. 5(c(i)) and
5(c(ii)). The peak phase shift corresponds to an OFI plasma
density ΔNe ¼ jΔϕp0jNcrλ0=2πL ≈ 5 × 1017 cm−3, where
Ncr ¼ 1.7 × 1021 cm−3 is the critical density at λ0 ¼
800 nm and L ¼ 2wTW= sin θ ∼ 250 μm is the OFI plasma
length experienced by Es. It is seen in Fig. 5(b) that an
amplitude modulation feature lies below the dashed red
line, starting near τ ¼ 0. This modulation is the diffractive
consequence of the OFI-induced phase perturbation and
develops during the 3 mm of propagation from the
interaction location to the TG-SSSI object plane. This
effect is borne out by the simulations of Figs. 5(a′)–(c′)
[performed using YAPPE (Appendix B)], which show that
similar diffractive modulations occur equidistantly above
and below the dashed red line, but have no effect on the
change in angular momentum of the pulse. Figure 5(a′)
shows the simulated unperturbed pulse jEsim

s j2 (ETW off)

and Fig. 5(b′) shows the perturbed pulse jEsim
sp j2 (ETW on),

both 3 mm past the intersection with ETW. Here, the
perturbation by ETW is simulated by imposing on Esim

s the
perturbation Γðx;τÞ¼ jΓðx;τÞjeiΔϕpðx;τÞ, with jΓðx;τÞj ¼ 1

and Δϕsim
p ðx; τÞ from Eq. (7), using hτ and hx derived from

the fit discussed above. The red and green horizontal
dashed lines in Figs. 5(a′)–5(c′) mark the center (x ¼ x0)
and �hx edges of Δϕsim

p ðx; τÞ.
In our main experiment, the results of which are shown

in Fig. 6, we varied the spatiotemporal torque on both
STOV and Gaussian pulses by scanning the transient wire
onset time τ0. For torquing the STOV pulse, we spatially
placed the wire near the top and bottom edges of the pulse,
x0 ¼ �120 μm [Figs. 6(a) and 6(b)] and at x0 ¼ 60 μm for
the Gaussian pulse [Fig. 6(c)]. The onset time was scanned
from −200 to 800 fs in steps of Δτ0 ∼ 66 fs, and the TG-
SSSI-extracted complex spatiotemporal fields Esðx; τÞ and
Espðx; τÞ were then used to determine ΔhLyi at each delay
using Eqs. (1a) and 1(b), which we label as ΔhLyi1a and
ΔhLyi1b. In Eq. (1a), we use the STOV OAM operator
Ly ¼ −iξ∂=∂x (for β2 ¼ 0) and the measured Es;spðx; ξÞ
fields, while in Eq. (1b), theHs;spðx; ξÞ fields are calculated
as the 2D inverse Fourier transforms of H̃s;spðk;ωÞ ¼
ðc=ωÞk × Ẽs;spðk;ωÞ, where Ẽs;spðk − k0;ωÞ is the dis-
crete 2D Fourier transform of the measured Es;spðx; ξÞ
fields and k0 ¼ k0ẑ is the pulse central wave number.
The top two rows in Figs. 6(a)–6(c) plot Ispðx; τÞ ¼

jEspðx; τÞj2 and Δϕpðx;τÞ¼arg½Espðx;τÞ�−arg½Esðx;τÞ�,
with all amplitude and phase data extracted from raw
TG-SSSI frames averaged over 500–750 shots. The lower
panels plot ΔhLyi1a and ΔhLyi1b versus the transient wire
onset delay. These plots are in excellent agreement, con-
firming that our expression for the transverse OAM
operator Ly [Ref. [22] and Eq. (2)] is correct. Overlaid
in Figs. 6(a)–(c) are curves for ΔhLyitheory, using Eqs. (6a)
and (6b) for ΔhLyiG and ΔhLyiSTOV. Agreement with the
experimental results is excellent. In each experiment
in Fig. 6, the measured experimental parameters are
slightly different. These are listed in the figure caption
and are incorporated into the expressions for ΔhLyiG and
ΔhLyiSTOV.
The results of Fig. 6 confirm our Sec. III theory: Once

the OFI plasma phase transient is shifted away from the
pulse envelope, ΔhLyi → 0. To impart spatiotemporal
torque and a change in transverse OAM, the perturbation
transient must temporally overlap with the pulse energy-
density distribution. Refractive-index transients with time-
scales much longer than the pulse temporal envelope have
little effect on the transverse OAM of a pulse. In general,
irrespective of its spatial location or peak amplitude, the
more imbalanced a transient spatiotemporal perturbation is
across the temporal center of energy of an optical pulse, the
greater effect it has on changing the transverse OAM.
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FIG. 5. (a) TG-SSSI measured Is ¼ jEsðx; τÞj2 (transient wire
off). (b) and (c) TG-SSSI measured jEspðx; τÞj2 and Δϕpðx; τÞ (in
rad) (transient wire on). (a′)–(c′) corresponding simulated
Isims ¼ jEsim

s ðx; τÞj2, Isimsp ¼ jEsim
sp ðx; τÞj2, and Δϕsim

p ðx; τÞ. (ci)
Lineout of (c) along dashed red line (solid red) and fit (dotted
green). (cii) Lineout of (c) along dashed blue line (solid blue) and
fit (dotted pink). The fit curve neglects the oscillations on the
right, which are due to the imaging plane being 3 mm past the
interaction (see text). The fits in (ci) and (cii) are to Δϕsim

p ðx; τÞ ¼
1
2
Δϕp0ð1þ erf½ ffiffiffi

2
p ðτ − τ0Þ=hτ�Þ expf−½ðx − x0Þ=hx�8g, giving

hτ¼hξ=vg¼44 fs and hx¼40μm. In (ci) x ¼ 120 μm ð¼x0Þ,
and in (cii) τ ¼ 100 fs.
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VI. CONCLUSIONS

We have demonstrated that the transverse OAM per
photon of an electromagnetic pulse can be changed only by
a transient phase perturbation comparable to the pulse
envelope and overlapping with it, or by a non-energy-
conserving amplitude perturbation if the pulse already has

transverse OAM density. Our half-integer theory of STOV
pulse OAM [22] is in excellent agreement with our
experiments and with propagation simulations that directly
use the E and H fields. The experiments of this paper, in
which spatiotemporal torques transiently overlapped the
short pulses to which they were applied, would not have
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FIG. 6. Effect of transient wire onset time τ0 on changing the transverse OAM of STOV and Gaussian pulses. Onset time is scanned
between −200 and 800 fs in Δτ0 ¼ 66 fs steps. (a) l ¼ 1 STOV pulse, with transient wire centered at x0 ¼ þ120 μm; (b) l ¼ 1 STOV
pulse, with transient wire centered at x0 ¼ −120 μm; (c) Gaussian pulse (l ¼ 0), with transient wire centered at x0 ¼ 60 μm. The top
two rows in (a)–(c) are Ispðx; τÞ ¼ jEspðx; τÞj2 and Δϕpðx; τÞ ¼ argðEspÞ − argðEsÞ (in rad), where Esðx; τÞ and Espðx; τÞ are the
unperturbed and perturbed complex fields extracted from TG-SSSI measurements. The spatial location of the perturbation is indicated
by the red dotted lines. The bottom panels in (a)–(c) plotΔhLyi1a andΔhLyi1b, which are the change in spatiotemporal OAM per photon
computed by inserting the measured Es and Esp into Eq. (1a), and the E andH fields computed from them into Eq. (1b). The error bars
are the � standard deviation over 500–750 shots of extracted data. Overlaid in (a)–(c) is ΔhLyitheory calculated using Eqs. (6a) and (6b),
in which we use measured and fit quantities. The FWHM of ΔhLyitheory in (a) and (b) is 280 fs. For ΔhLyitheory in panel
(a)Δϕp0¼−0.45, w0x¼120μm, w0ξ ¼ 56 μm, h ¼ 40 μm, x0 ¼ 120 μm). ForΔhLyitheory in panel (b)Δϕp0 ¼ −0.21, w0x ¼ 110 μm,
w0ξ ¼ 56 μm, h ¼ 40 μm, x0 ¼ −120 μm. For ΔhLyitheory in panel (c) Δϕp0 ¼ −0.31, w0x ¼ 100 μm, w0ξ ¼ 61 μm, h ¼ 40 μm,
x0 ¼ 60 μm. The “−∞” mark on the time axes refers to the ξ0 → −∞ limit of ΔhLyitheory.
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been possible without our ability to extract STOV pulse
amplitude and phase, and small changes in transverse
OAM, using our high-bandwidth, high time- and space-
resolution single-shot technique, TG-SSSI [17].
The concept of spatiotemporal torque introduced in this

paper, provides insight into the dynamics leading to
changes in transverse OAM: The effective force manifested
as a spatiotemporal phase gradient supplied by the pertur-
bation is weighted by the spacetime lever arm and the
electromagnetic energy-density distribution. If the initial
field is a STOV pulse with zero energy density at the
singularity (an “edge-first flying donut” [16]), spatiotem-
poral torquing can be analogized by mechanical torque on a
rotating hoop, where maximum change in OAM is obtained
by applying force at the outer rim, where the product of
lever arm and mass density is maximum. However, unlike
in the mechanical case, a spatiotemporal torque applied to
an optical pulse changes the OAM of all particles (photons)
identically. The other way to change transverse OAM is to
remove energy from a pulse already containing transverse
OAM density; this can be accomplished by a non-energy-
conserving amplitude perturbation. This imposes a new
spatiotemporal distribution of the remaining energy and
thus a new transverse OAM per photon. Here, the
mechanical analogy is location-specific mass removal from
a spinning wheel.
Our results point the way to methods of distortion-free

encoding of information in transverse OAM, for example,
in propagation through turbulent atmosphere. The shortest
transient timescale for turbulent refractive-index fluctua-
tions in the atmosphere is a few milliseconds [38], at least
10 orders of magnitude longer than a 100 fs pulse, so air
turbulence acts as a weak stationary perturbation with no
effect on the expectation value of transverse OAM per
photon. While the turbulence-induced spatial phase shifts
can manifest as transverse (xy) spatial distortion of the
beam, the encoded spatiotemporal phase structure makes
possible the extraction of time-based information with fast
retrieval schemes.
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APPENDIX A: TRANSVERSE ORBITAL
ANGULAR MOMENTUM OF LIGHT

1. Choice of origin in the calculation
of intrinsic OAM

In the interaction of OAM-carrying light with matter,
only the intrinsic OAM carried by photons is of physical

significance. Direct calculation of the intrinsic OAM of an
electromagnetic field depends on the correct choice of
origin. Recently, this has been a point of discussion in the
context of STOV pulses with transverse OAM [34,39].
Here we show that the correct choice of origin for directly
isolating the intrinsic part of OAM is the electromagnetic
energy centroid. This applies to longitudinal, transverse, or
any other orientation of OAM.
Consider the electromagnetic angular momentum (AM)

quantity L evaluated with respect to an arbitrary position
rc, where the integral is over all space. In general, this
includes OAM and spin angular momentum

L ¼ ð4πcÞ−1
Z

d3rðr − rcÞ × ðE ×HÞ or

L ¼ ð4πcÞ−1
Z

d3r r × ðE ×HÞ − rc × vCEU=c2: ðA1Þ

Here, we use the general relation, for both massless and
massive particles, between total linear momentum P and
the velocity of the center of energy vCE,

vCEU=c2 ¼ P ¼ ð4πcÞ−1
Z

d3rðE ×HÞ; ðA2Þ

where here U ¼ ð16πÞ−1 R d3rðjEj2 þ jHj2Þ is the total
pulse energy. In vacuum jvCEj ¼ c, and in a dispersive
medium jvCEj ¼ vg.
Consulting Fig. 7, consider an arbitrary lab-frame origin

from which we take rc ¼ rCE ¼ rCE;⊥ þ vCEðt − t0Þ,
where rCE;⊥ is a vector from the origin to the center-of-
energy trajectory and orthogonal to it. Then Eq. (A1)
becomes

L ¼ ð4πcÞ−1
Z

d3r r × ðE ×HÞ − rCE × P

¼ Ltot −Lext; ðA3Þ

where the first term is the time-invariant total AM Ltot,
and we identify the second term as the arbitrary extrinsic
OAM Lext ¼ rCE × P ¼ rCE;⊥ × P, which is also invariant
because dLext=dt ¼ drCE=dt × P ¼ 0. Thus, we identify

L ¼ ð4πcÞ−1
Z

d3rðr − rCEÞ × ðE ×HÞ ¼ Lint ðA4Þ

as the intrinsic electromagnetic angular momentum.
Note that Eq. (A4) is general and can apply to both

longitudinal and transverse OAM (STOV) pulses as
sketched in Fig. 7. A propagating pulse with longitudinal
OAM, as shown in Fig. 7(a), has its intrinsic OAM directly
calculated using Eq. (A4) with rCE ¼ vCEðt − t0Þ.
Monochromatic fields with longitudinal OAM can be
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viewed as pulses with bandwidth narrowed to zero and
“infinitely stretched” in the �vCE directions. Then the
integral becomes one purely in the plane transverse to vCE,
but without reference to vCE. In the case of transverse
OAM-carrying pulses, as shown in Fig. 7(b), one uses
rCE ¼ vCEðt − t0Þ. When intrinsic transverse OAM is
evaluated with respect to rCE, the total transverse linear
momentum perpendicular to propagation vanishes, P⊥¼0,
as is also the case when calculating intrinsic longitudinal
OAM [40].
In light of these results, we now consider recent

work by Bliokh [34] and Porras [39]. For the case of a
symmetric pulse propagating along z with respect to the
origin ðx; zÞ ¼ ð0; 0Þ,vCE ¼ vCEẑ. Inspection of Fig. 7
immediately shows that rCE;⊥ ¼ 0 and Lext ¼ 0.
However, for exactly these conditions, Ref. [39] calculates
Lext ≠ 0. In the specific case of a symmetric STOV pulse of
topological charge l, Ref. [39] calculatesLext ¼ −l=2ŷ and
then assigns a physical significance to it. However, what-
ever the value of Lext, it is of no physical consequence; it is
an arbitrary quantity having nothing to do with the OAM
carried by photons. It plays no role in the exchange of
OAM between light and matter.
Regarding Ref. [34], it is asserted that the correct choice

of origin when calculating intrinsic OAM is the “photon
centroid” rPC, which is defined using the “photon wave
function” [41] to be the photon-number density-weighted
position. Then one would write Ltot ¼ Lint þ rPC × P.
Applying the time derivative to this equation, and requiring
thatLint,Ltot, and P be invariant, one must have drPC=dt ×
P ¼ 0 for AM conservation. However, drPC=dt ≠ 0 for a
moving pulse and, in general, drPC=dt ≠ vCE (consider, for
example, an optical pulse with spatial chirp). Therefore,
drPC=dt × P ≠ 0, AM is not conserved in the formulation
of Ref. [34], and the choice of photon centroid is incorrect.
A straightforward mechanical analogy also makes this
point: The intrinsic OAM of a composite body, consisting
of point particles of varying mass, must be calculated with
respect to the center of mass and not the particle number
centroid.

2. Conservation of transverse OAM operator
Ly under nonparaxial propagation

In Ref. [22], we showed that the transverse OAM
operator Ly ¼ −iðξ∂=∂xþ β2x∂=∂ξÞ was conserved under
paraxial propagation. Here, we extend this to the non-
paraxial case. We start with the nonparaxial propagation
equation for the field envelope Aðr⊥; z; tÞ,

∂
2A
∂z2

þ i2k0
∂A
∂z

¼ −∇2⊥A − i2k0k00
∂A
∂t

þ k0k000
∂
2A
∂t2

: ðA5Þ

Using ζ ¼ z, ξ ¼ vgt − z, H ¼ −∇2⊥ þ β2∂
2=∂ξ2, and

p2
z ¼ −∂2=∂z2, Eq. (A5) becomes

∂A
∂ζ

¼ i
2k0

�
HA −

�
∂
2A
∂ζ2

− 2
∂
2A

∂ζ∂ξ
þ ∂

2A
∂ξ2

��

¼ i
2k0

½H − p2
z �A: ðA6Þ

Then for hLyi ¼ hAjLyjAi,

d
dz

hLyi¼h ∂
∂z
AjLyjAiþhAj ∂

∂z
LyjAiþhAjLyj

∂

∂z
Ai: ðA7Þ

Since Ly does not explicitly depend on z, and since H, Ly,
and pz are all Hermitian, Eq. (A5) becomes

d
dz

hLyi ¼
i

2k0
hAj½H;Ly�jAi þ

i
2k0

hAj½Ly; p2
z �jAi

¼ 0; ðA8Þ

because Ly commutes with both H and p2
z .

3. Assessment of an alternative transverse
OAM operator

Recent work by Bliokh [33,34] has asserted that the
“canonical” operator for the intrinsic transverse OAM is

FIG. 7. (a) Pulse with longitudinal OAM propagating at center-of-energy velocity vCE. Monochromatic, “infinitely long” pulses can be
viewed as this pulse stretched in the �vCE directions. In that case, the calculation of intrinsic OAM is done using Lint ¼
ð4πcÞ−1 R d3rðr − rCEÞ × ðE ×HÞ with no reference to vCE. (b) STOV pulse (with transverse OAM) propagating at center-of-energy
velocity vCE. All coordinates in (a) and (b) are in the lab frame.
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£y ¼ −i
�
ξ
∂

∂x
− x

∂

∂ξ

�
; ðA9Þ

where x and ξ are as defined earlier. In the formulation of
Refs. [33,34], x and ξ are treated on an equal footing, just as
x and y are treated in the Lz operator for the longi-
tudinal OAM.
Adoption of £y assumes unphysical effects, including

super- and subluminal energy-density flow around the
spatiotemporal vortex singularity in vacuum, and non-
conservation [22]. While any valid angular momentum
quantity should be conserved with propagation, £y is not.
Namely,

d
dz

h£yi¼
i

2k0
h½H;£y�i ¼ k−10 ð1þβ2Þ

	
∂
2

∂x∂ξ



z¼0

; ðA10Þ

which is nonzero except if β2 ¼ −1 (when Ly → £y) or
when there is spatiotemporal field symmetry.
We test the consequences of using £y against asymmet-

rically perturbed pulses generated both in simulations and
in our experiments. Such fields are generated, as seen in
Figs. 5 and 6, when a spatiotemporal perturbation is
applied to a symmetric pulse. Here, we simulate an
asymmetric perturbation by applying at z ¼ 0− a phase-
only perturbation Γðx; ξÞ ¼ eiΔϕpðx;ξÞ, with Δϕpðx; ξÞ from
Eq. (A7) (with Δϕp0 ¼ −0.5, x0 ¼ −100 μm, ξ0 ¼ 0,
hx ¼ 50 μm, and hξ ¼ 50 μm) to the Gaussian pulse AG

of Eq. (5a). The transverse OAM of AG is zero.
Nonparaxial propagation evolution of the perturbed
field Aspðx; y; ξ; zÞ ¼ Γðx; ξÞAGðx; y; ξ; zÞ is then com-
puted using our code YAPPE (Appendix B). In Fig. 8,

we plot ΔhLyiz¼u−1sp hAspjLyjAspiz and Δh£yiz¼
u−1sp hAspj£yjAspiz as a function of the propagation distance
z. The immediate postperturbation values ΔhLyiz¼0

and
Δh£yiz¼0

are shown in the figure; these differ. It is clear that
ΔhLyiz is conserved with propagation, while Δh£yiz is not.
The divergence ofΔh£yiz is predicted by Eq. (A10) and is a
consequence of the noncommutation of £y and the propa-
gation operator H. This increase is linear in z, with slope
dh£yi=dz ¼ k−10 h∂2=∂x∂ξiz¼0, and is in excellent agree-
ment with Δh£yiz ¼ u−1sp hAspj£yjAspiz. Calculating the
change in transverse OAM using Eq. (1b), with the E
and H fields propagated nonparaxially by the YAPPE

simulation, gives the blue points labeled as ΔhLS
yiz; these

agree with ΔhLyiz.
Note that nonconservation of h£yi is independent of

choice of origin, whether it is the pulse center of energy r0sp
(as in Fig. 8) or the photon centroid [34], so £y cannot be
corrected with extrinsic OAM contributions. This is
because nonconservation of £y is caused by the inclusion,
even in vacuum, of a nonzero linear momentum density
pξ ¼ −i∂=∂ξ. As the propagating pulse spatially (trans-
versely) diffracts, with its width in x increasing, the
contribution of xpξ to £y increases and hAspj£yjAspiz
unavoidably increases with propagation. There are circum-
stances, not involving pulse propagation, where £y is
appropriate to use. One such example is a vortex stationary
in the lab frame [31,32,42], whose transverse OAM, say,
along ŷ, can be described in x-z space coordinates.
Finally, we directly compare the predictions of

Refs. [33,34] against our experimental results. Figure 9
replots the curves of Fig. 6 and overlays Δh£yi, where the
latter is computed using Eq. (1a), with the complex fields
provided by the TG-SSSI measurements. The results
deviate greatly from the three other curves. We therefore
conclude, on both theoretical and experimental grounds,
that £y is an incorrect operator for transverse spatiotem-
poral OAM. Calculations in recent work [39] support our
results for intrinsic transverse OAM [22].

4. Effect of a spatiotemporal perturbation
on transverse OAM

The expectation values of Ly per photon for the unper-
turbed and perturbed pulses Asðx;ξÞ¼jAsðx;ξÞjeiϕsðx;ξÞ and
Aspðx;ξÞ ¼ Γðx;ξÞAsðx; ξÞ ¼ jΓðx; ξÞjeiΔϕpðx;ξÞAsðx; ξÞ are

hLyis;sp ¼ u−1s;sphEs;spjLyjEs;spi: ðA11Þ

This gives

hLyis ¼ u−1s
Z

dxdξjAsj2
�
ξ
∂ϕs

∂x
þ β2x

∂ϕs

∂ξ

�
ðA12aÞ

and
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FIG. 8. Propagation evolution of ΔhLyi ¼ u−1sp hAspjLyjAspiz
(red curve) and Δh£yi ¼ u−1sp hAspj£yjAspiz (green curve), where
the z evolution of Aspðx; y; ξ; zÞ is nonparaxially computed using
our code YAPPE (Appendix B). The perturbation [given by Eq. (7),
with Δϕp0 ¼ −0.5, x0 ¼ −100 μm, ξ0 ¼ 0; hx ¼ 50 μm, and
hξ ¼ 50 μm] is applied to the Gaussian pulse of Eq. (5a), with
wox ¼ 100 μm and w0ξ ¼ 100 μm. The immediate postperturba-
tion OAM changes are ΔhLyiz¼0

¼ 0.012 and Δh£yiz¼0
¼−0.10.

Also plotted are large blue points ΔLS
y computed using Eq. (1b),

with the E and H fields propagated nonparaxially with
YAPPE, and small black points computed asΔh£yiz ¼ Δh£yiz¼0

þ
k−10 zh∂2=∂x∂ξiz¼0 from integration of Eq. (A10), where
h∂2=∂x∂ξiz¼0¼hAspj∂2=∂x∂ξjAspi for Asp ¼ Aspðx; y; ξ; z ¼ 0Þ.
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hLyisp ¼ u−1sp
Z

dxdξ
�
−ijAsj2jΓj

�
ξ
∂jΓj
∂x

þ β2x
∂jΓj
∂ξ

�
− ijΓj2jAsj

�
ξ
∂jAsj
∂x

þ β2x
∂jAsj
∂ξ

�

þ jAsj2jΓj2
�
ξ
∂Δϕp

∂x
þ β2x

∂Δϕp

∂ξ

�
þ jAsj2jΓj2

�
ξ
∂ϕs

∂x
þ β2x

∂ϕs

∂ξ

��
; ðA12bÞ

where the y dependence is integrated out. The first two terms in Eq. (A12b) integrate to zero, yielding

ΔhLyi ¼ hLyisp − hLyis
¼ iu−1sp

Z
dxdξ

�
jAsj2jΓj2LyΔϕp þ jAsj2

�
jΓj2 − usp

us

�
Lyϕs

�
: ðA13Þ

For an initial pulse with zero transverse OAM density, such as a Gaussian, Lyϕs ¼ 0 and

ΔhLyi ¼ iu−1sp
Z

dxdξjAsj2jΓj2LyΔϕp: ðA14Þ

For a phase-only perturbation jΓðx; ξÞj ¼ 1, usp ¼ us, and Eq. (A14) also applies.
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FIG. 9. Comparison of the predictions of Refs. [33,34] against our experimental results. The above panels replot the curves of Fig. 6
and overlay Δh£yi, where the latter is computed using Eq. (1a), with the complex fields provided by the TG-SSSI measurements.
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5. Spatiotemporal torque and STOV formation
in femtosecond filamentation

The first experimental measurement of STOVs [11],
which were spontaneously generated as a consequence of
arrested self-focusing collapse in femtosecond pulse fila-
mentation in air, can be understood in terms of spatio-
temporal torque. In air, femtosecond filamentation [43,44]
occurs when an ultrashort pulse undergoes self-focusing
collapse, which continues and accelerates until the intensity
is high enough to ionize air molecules via OFI, with the
ultrafast-rise-time plasma then acting to defocus the pulse.
The few-femtosecond rise time of the plasma determined
by the OFI rate occurs within the pulse temporal envelope.
The generated plasma then has a recombination-limited
lifetime of several nanoseconds, an extremely long time-
scale compared to the pulse itself. The phase perturbation
imparted by this plasma—responsible for spatiotemporal
torque—is therefore quite well modeled by Eq. (4) for
ðx0; ξ0Þ ¼ ð0; 0Þ and h=w0x ∼ 0.5, where the filament
plasma is centered on the pulse, and its width 2h is
narrower than the beam width of approximately 2w0x.
The case of β2 ¼ 0 and h=w0x ¼ 0.5 [middle right panel

in Fig. 2(a)] can apply to filaments, and it gives ΔhLyi ¼ 0

for ðx0; ξ0Þ ¼ ð0; 0Þ. This is consistent with total transverse
OAM of zero in the toroidal STOVs first measured in
Ref. [11]. However, the change in transverse OAM density
ΔMyðx; ξÞ ¼ A�

spLyAsp [from Eq. (1a)] is nonzero, and this
is the effect measured in the experiment of Ref. [11], albeit
for a much larger jΔϕp0j accumulated over self-focused
propagation in ionizing air. The plots of ΔMy vs ðx; ξÞ in
Figs. 10(a) and 10(b) show regions of OAM density of
opposite sign across the x ¼ 0 axis, displaying physics
similar to an x-ξ planar slice of the toroidal STOVs of
Ref. [11]. Figure 10(a) plots ΔMy for the simple step-
function perturbation of Eq. (4); nonzero ΔMy regions are
only one pixel wide. Figure 10(b) uses Eq. (7), a more
realistic perturbation with smoothed step transitions, where
we take ðx0; ξ0Þ ¼ ð0; 0Þ, hx=w0x ¼ 0.5, and hξ=w0ξ ¼ 0.5.

6. Application of a spatiotemporal phase
perturbation localized in space and time

As discussed in Sec. IV, our transient wire spatiotemporal
perturbation is well modeled by Eq. (4) or Eq. (7), which
describe a narrow spatial structure with a fast turn-on time
and no turn-off. To more finely map the effect of spatio-
temporal perturbations on electromagnetic pulses, we con-
sider a phase perturbation Γðx; ξÞ ¼ eiΔϕpðx;ξÞ localized in
both space and time and centered at ðx0; ξ0Þ: Δϕpðx; ξÞ ¼
Δϕp0 exp½−ðx − x0Þ2=h2x − ðξ − ξ0Þ2=h2ξ �. Figure 11 shows
the change in transverse OAM per photon ΔhLyix0;ξ0 for
various pulses as a function of ðx0; ξ0Þ, plotted from analytic
expressions determined using Eq. (1a) [45]. In all cases,
we take β2 ¼ 0 and the perturbation spatial width hx=w0x ¼
0.25, with the other parameters listed on the panels and in the
figure caption.
Examination of Fig. 11(a) for spatiotemporal torque

applied to the l ¼ 1 STOV pulse of Eq. (5b) confirms our
intuitive expectations from Sec. III. Torque is maximized
when the perturbation peak ðx0; ξ0Þ is placed at the spatio-
temporal locations with appreciable energy density and lever
arm [see Eq. (3)], while dropping to zerowhen crossing lines
marking the spatial and temporal centers of energy, where
torque contributions from opposites sides in space and time
cancel. Combined, the two effects give rise to the character-
istic four-lobed patterns plotted. A similar pattern appears in
the torquing of Gaussian pulses [45]. It is interesting to note
that the locations of maximum torque are spatiotemporally
outside the peak intensity contour ofASTOV, which ismarked
with a dashed red circle. This is the effect of lever arm
weighting of the optical energy density in Eq. (3). Aweaker
four-lobed structurewith opposite polarity can be seen inside
the peak intensity contour; here, hx=w0x ¼ 0.25 and
hξ=w0ξ ¼ 0.25 are small enough for the perturbation to
torque the inside of the STOV “wheel.” This structure
disappears for the larger values of hξ=w0ξ in Fig. 11(b).
Also evident is the linear scaling of ΔhLyi with α, which
follows from our theory of STOV transverse OAM [22].
The effect of a temporally widening Δϕpðx; ξÞ of fixed

peak amplitude is plotted at the bottom of Fig. 11(b). It is
seen that in the middle panel (for the middle pulse width),
the torque is both larger in size and is effectively applied
over a wider spatiotemporal area than for perturbations of
shorter and longer pulse widths. In particular, the very long
perturbation of the rightmost panel registers negligible
ΔhLyix0;ξ0 anywhere, consistent with the perturbation
approaching steady state. The blue curve, just below, plots
jΔhLyix0;ξ0 jmax, showing that a perturbation transient com-
parable to the optical pulsewidth (hξ=w0ξ ∼ 1) is most
effective in maximizing the duration of torque. For the case
of an energy-limited perturbation, increasing its duration hξ
may result in decreasingΔϕp0. The red dashed curve, using
the constraint ðhxhξÞ−1

R
dxdξΔϕpðx; ξÞ ¼ 1, shows this

FIG. 10. (a) Change in transverse angular momentum density
ΔMyðx; ξÞ ¼ A�

spLyAsp of a Gaussian pulse AGðx; ξÞ using step-
function perturbation, Eq. (4). (b) Same as (a) except using
smoothed perturbation, Eq. (7). In both panels, ΔMyðx; ξÞ is
normalized by the maximum value jΔMyðx; ξÞjmax.
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effect, where in this case the most effective perturbation is
the shortest.

APPENDIX B: PROPAGATION SIMULATIONS

3Dþ 1 (three space dimensions plus time) simulations
of nonparaxial pulse propagation were performed using our
unidirectional pulse propagation equation [46,47] imple-
mentation called YAPPE [48] for linear propagation in a
dispersive medium. YAPPE solves a system of ordinary
differential equations,

∂

∂z
Ẽkx;kyðω; zÞ ¼ iKzðω; kx; kyÞẼkx;kyðω; zÞ; ðB1aÞ

Ẽkx;kyðω;zÞ¼ Ẽkx;kyðω;z¼ 0Þexp½iKzðω;kx;kyÞz�: ðB1bÞ

Here, Ẽkx;kyðω; zÞ ¼ F x;y;τfEðx; y; τ; zÞg is the 3D Fourier
transform of the spacetime field Eðx; y; τ; zÞ, where
τ ¼ t − z=vgðωÞ, ω is the angular frequency, vgðωÞ is the
frequency-dependent group velocity in the medium, and
Kzðω; kx; kyÞ ¼ ½ðω=vgðωÞÞ2 − ðk2x þ k2yÞ�1=2 − ω=vgðωÞ,
which models diffraction and dispersion. The transverse
wave number ðkx; kyÞ indexes the system of equations
[Eq. (B1)], which are numerically solved. To recover the
field in the spacetime domain, a 3D inverse Fourier transform
is performed, Eðx; y; τ; zÞ ¼ F−1

kx;ky;ω
fẼkx;kyðω; zÞg.

FIG. 11. Plots of analytic solutions [45] for change in transverse OAM per photon,ΔhLyix0;ξ0 imparted to an optical pulse as a function
of ðx0; ξ0Þ by a spatiotemporal phase perturbation Γðx;ξÞ¼exp½iΔϕpðx;ξÞ�. Here, Δϕpðx;ξÞ¼Δϕp0exp½−ðx−x0Þ2=h2x−ðξ−ξ0Þ2=h2ξ],
Δϕp0¼1, β2 ¼ 0, and hx=w0x¼0.25. (a) Perturbation Γðx; ξÞ applied to an l ¼ 1 STOV pulse ASTOVðx; ξÞ ¼ ðξ=w0ξ þ ix=w0xÞAGðx; ξÞ
for hξ=w0ξ ¼ 0.25 and α ¼ w0ξ=w0x ¼ 0.5, 1, and 2. The red dashed circle in the center panel is the contour of peak intensity of
jASTOVj2. (b) Γðx; ξÞ applied to ASTOVðx; ξÞ as in (a), here with α ¼ 1 and transient width hξ=w0ξ ¼ 0.5, 1, and 10. The curves
immediately below plot the maximum absolute change in OAM (jΔhLyix0;ξ0 jmax) vs transient width hξ, for the cases of fixed peak phase
shift Δϕp0 ¼ 1 and constant integrated phase shift ðhxhξÞ−1

R
dxdξΔϕpðx; ξÞ ¼ 1. The overlaid dashed red circle follows the maximum

intensity contour of ASTOV.

SPATIOTEMPORAL TORQUING OF LIGHT PHYS. REV. X 14, 011031 (2024)

011031-15



APPENDIX C: DETAILED EXPERIMENTAL SETUP

The detailed experimental setup is shown in Fig. 12.
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