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Abstract: Bessel beams generated with non-ideal axicons are affected by aberrations. We
introduce a method to retrieve the complex amplitude of a Bessel beam from intensity measure-
ments alone, and then use this information to correct the wavefront and intensity profile using a
deformable mirror.
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1. Introduction

A Bessel beam is a propagation-invariant solution of the Helmholtz equation where the transverse
electric field distribution follows a qth order Bessel function, E(r) = Jq(k⊥r). Here, k⊥ = |k⊥ | is
the perpendicular wave number, the total wavenumber is k = k⊥ + k∥ , and k∥ = kẑ is the beam
propagation wavenumber along z. Such an infinitely wide beam is “diffraction-free” [1] in the
same trivial sense as a plane wave, but any practical realization of such a beam –also typically
called a Bessel beam– has a finite aperture and thus is not diffraction-free. The axial extent
of near-invariance along z, however, can be quite long by design, making these beams of high
interest for applications which include optical trapping [2], laser machining [3,4], and optical
coherence tomography [5]. Our particular interest has been the application of high intensity
Bessel beams to generation of plasma waveguides for advanced laser-driven accelerators [6–11].

A Bessel beam can be viewed as resulting from the self-interference of a conical wave. As
the spatial frequency spectrum of a Bessel beam is an annulus in k⊥ space, it can be generated
with an annular aperture placed on the back focal plane of a converging lens [1]. It can also be
generated by imposing a conical phase shift on a Laguerre-Gauss beam using an axicon [12], a
diffractive optical element [11,13], or a spatial light modulator (SLM) [14]. Specifically, the
versatility of SLMs for arbitrary beam shaping has led to a growing body of research on their use
in the generation and application of Bessel beams [15]. With complex phase mappings, SLMs
were utilized to generate high order Bessel beams [16], superpositions of Bessel beams [17], and
Bessel beam arrays [18]. The longitudinal intensity variation of Bessel beams can be tailored by
SLMs [19], and their centroids can be controlled to follow a curved trajectory [20–22].

For most applications, it is desired that generated Bessel beams have some minimum level
of fidelity to the Bessel functional form, with a clear maximum on axis (for J0) or off axis (for
Jq>0), bounded by regions of near-zero field. This is a requirement for the generation of plasma
waveguides, where the maximum intensity of Bessel beam must exceed the ionization threshold
of the working gas [6,23]. In practice, Bessel beam fidelity is degraded by aberrations added by
the phase-imposing element (axicons, diffractive optical elements, SLMs etc.) and in the incident
beam, and so a straightforward, robust, and high-resolution method is needed for Bessel beam
phase front correction. Prior work on Bessel beam astigmatism [24–27], due to either wavefront
aberration or oblique illumination, has focused on the forward propagation problem rather than
the phase retrieval problem.
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While optical beam wavefront can be directly characterized by interferometry or with Shack-
Hartmann wavefront sensors [28,29], the drawbacks for a particular application may be setup
complexity or intrinsic resolution limitations such as the number and size of micro-lenses in
Shack-Hartmann sensors. In an indirect approach using a SLM, a beam’s aberrated intensity
profile is iteratively converged, via successive SLM-imposed phase corrections, to a reference
profile such as a Gaussian. The corrected aberrations are the phase corrections accumulated
over the optimization, which is achieved by the Gerchberg-Saxton algorithm [30], by complex
modulation between orthogonal modes [31,32], by Stokes polarimetry [33], by monitoring the
focal sharpness metric [34] or by a least squares fitting algorithm using Zernike polynomials
[35]. Indirect aberration correction of Bessel beams with a SLM has been reported in [36], using
a beam propagation code. Recently, a SLM was used to act as a variable ellipticity axicon to
correct Bessel beam aberration due to oblique incidence on optical material interfaces [37].

For Bessel beam applications requiring high laser pulse intensities and large beam diameters,
such as the generation of plasma waveguides [6–11], available SLMs are too small and have a
relatively low optical damage threshold; reflective axicons [7,8] or thin diffractive optical elements
[11] are the only choices for Bessel beam generation. For such applications, a method for Bessel
beam wavefront correction based on intensity measurement alone is desirable. We present such
a method using a deformable mirror (DM) and verify it both numerically and experimentally.
Our method allows direct extraction of Zernike coefficients of wavefront aberration and offers
in-situ correction of Bessel beams. As we demonstrate in the following sections, the principle is
applicable to Bessel beams generated not only by axicons but also by SLMs.

2. Bessel beam with aberrations

If Ẽ(ρ, θ, z = 0) = ˜︁|E(ρ, θ)|exp(iψ(ρ, θ)) is the electric field incident on a shallow axicon, forming
a conical wavefront with base angle α ≪ 1, the diffraction integral, in the paraxial approximation,
gives the complex field at (r, ϕ, z) as

U(r, ϕ, z) =
1

iλz
exp

(︃
ikz +

ikr2

2z

)︃ ∫∫
dρdθρ Ẽ(ρ, θ)exp

(︃
ik
(︃
ρ2

2z
− ρ tanα −

ρr
z

cos(ϕ − θ)

)︃)︃
.

(1)
Assuming Ẽ(ρ, θ) is a slowly varying function of ρ and using the identity eix cos θ =∑︁∞
n=−∞ inJn(x)einθ , we get

U(r, ϕ, z) =
1

iλz
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)︃
∫ dθ Ẽ(ρ, θ) einθ .

(2)

The wavefront of the incident beam is separated into two parts ψ(ρ, θ) = ψρ(ρ) + ψθ (ρ, θ)
based on their azimuthal dependence. In terms of Zernike polynomials, ψρ(ρ) includes defocus,
spherical aberration, etc. and ψθ (ρ, θ) contains all the non-cylindrically symmetric terms.
Equation (2) is further simplified using the method of stationary phase. Rearranging the terms of
(2), we have

U(r, ϕ, z) = A(z)
∑︂

n
(−i)ncn Jn(k⊥r)e−inφ , (3)

where cn = ∫2π
0

˜︁|E(ρz, θ)|exp(iψθ (ρz, θ) + inθ)dθ, k⊥ = k tanα − dψρ(ρ)/dρ and A(z) =√︁
z/λ tanαexp(ik(z(1 − tan2α/2) + r2/2z) − iπ/4). Particularly, k⊥ is evaluated at radial position

ρ which satisfies kρ/z − k tanα + dψρ/dρ = 0. We note that experimentally, ψρ(ρ) is on the
order of unity and (dψρ/dρ)/(k tanα) ∼ 1/(kρmax tanα) ≪ 1, where ρmax is the maximum radial
aperture (typically in centimeters). Therefore, dψρ(ρ)/dρ is a small correction term and we



Research Article Vol. 30, No. 7 / 28 Mar 2022 / Optics Express 11362

solve ρ as a function of z up to first order in dψρ(ρ)/dρ as ρz = ρz0 − (z/k) dψρ(ρz0)/dρ, and
ρz0 = z tanα. Finally, Ẽ(ρz, θ) maps to the field focal profile at z.

For generation of Bessel beams of order q (0, 1, 2, . . .), we put Ẽ(ρz, θ) → Ẽ(ρz, θ)eiqθ ,
where one can consider the incident field Ẽ(ρz, θ) as having passed through a spiral phase plate
of order q [7], so that cn = c(q)n = ∫2π

0
˜︁|E(ρz, θ)|exp(iψθ (ρz, θ) + i(n + q)θ) dθ. Therefore, Bessel

beams can be decomposed into a series of orthogonal functions Jn(k⊥r) e−inφ , with aberrations in
the focal profile at z determined by the phase distortion of the input beam in the annulus (ρz, θ).
The phase retrieval problem reduces to a complex optimization problem, i.e. finding a set of
coefficients

{c(q)n , k⊥} = argmin η({c(q)n , k⊥}), (4)

where
η({c(q)n , k⊥}) = ∫ [

|︁|︁|︁∑︂
n
(−i)nc(q)n Jn(k⊥r) e−inφ

|︁|︁|︁2 − IM,z(r, ϕ)]2/I2
M,zrdrdϕ (5)

is the cost function and IM,z(r, ϕ) is measured intensity profile at z. The complex minimization is
completed using the complex optimization toolbox Tensorlab [38,39].
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Fig. 1. Flow chart of the phase retrieval algorithm. For each intensity measurement at
z, in the first loop the algorithm searches for the optimum transverse wavenumber kopt

⊥ to
minimize η with a small number of modes nb ≈ 5 and calculates the mapped radial position
ρz, and the radial phase gradient dψρ/dρ. The second loop minimizes the cost function
η({c(q)n , kopt

⊥ }) with increasing nb. Finally the input electric field is calculated by (6).

A flow chart is shown in Fig. 1 to illustrate the phase retrieval process of each measurement
along z. First, we normalize the measured intensity profile, and initialize {c(q)n , k⊥} with random
values between 0 to 1. Then, in the k⊥ loop we find the correct transverse wavenumber kopt

⊥ ,
by varying k⊥ to minimize, by gradient descent, the cost function η for n ≤ nb. Here nb is
maximum index n of the mode summations in Eq. (3) and Eq. (5). Subsequently, in the {c(q)n }

loop, η({c(q)n , kopt
⊥ }) is minimized with the nonlinear conjugate gradient method or the L-BFGS

method [38] for each nb; nb is increased until the cost function reaches a preset threshold
ηth, or a maximum iteration number in the loop is reached. Once {c(q)n , kopt

⊥ } is found, this
determines U(r, ϕ, z). At each measurement along z, the radial wavefront gradient is calculated
by dψρ(ρz)/dρ ≈ dψρ(ρz0)/dρ = k tanα − kopt

⊥ and the mapped radial location at the input
aperture is ρz = z kopt

⊥ /(k tanα). Integrating along ρ and summing all the contributions from
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{c(q)n }, we get the corresponding input electric field at ρz as

Ẽ(ρz, θ) = exp(iψρ(ρz))
∑︂

n

1
2π

∫
2π
0 c(q)n exp(−i(n + q)θ)dθ. (6)

The phase retrieval algorithm gives a full measurement of the wavefront error ψ(ρ, θ), including
terms with radial dependence alone, such as defocus and spherical aberration. Additionally, for
moderately small coma aberration, the whole intensity profile is translated [20–22]. If the optical
axis position is calibrated at each measurement plane, the method is capable of extracting coma.

We note that the minimization in Eq. (4) always converges to either Ẽ(ρ, θ)eiqθ or
Ẽ∗(ρ, θ + π)e−iq(θ+π), corresponding to an output field of U or
U∗ respectively. Which of these results is applicable is resolved by comparing the extracted
intensity profile |Ẽ(ρz, θ)|2 to the measured beam intensity profile. If the extracted profile is
rotated by π compared with the measured profile, then it corresponds to the complex conjugate
solution. As we desire our Bessel beam correction procedure to provide mainly rotational
symmetry, aberrations with the 1st order azimuthal dependence in cos θ or sin θ (e.g., coma) are
not considered in the following numerical examples.
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Fig. 2. Phase retrieval of synthetic Bessel beams with aberrations. (a)-(e) Synthetic J0
at z/λ = 2.5, 5.0, 7.5, 10 and 12.5 × 104 . (a′)-(e′) Corresponding retrieved J0 with 1%
noise added to (a)-(e). Each panel has width and height of 400 λ. (f) Retrieved phase map of
the full J0 input beam with 1% noise. The color bar shows phase in radians. (g) Difference
between retrieved and input phase map (the retrieved and input maps are very close and look
the same). (h) Zernike coefficients (up to J< 21) of the input phase map, retrieved phase
map, and retrieved phase map with 1% white noise added to input.
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Fig. 3. Phase retrieval of synthetic Bessel beams with aberrations. (a)-(e) Synthetic J8
at z/λ = 2.5, 5.0, 7.5, 10 and 12.5 × 104 . (a′)-(e′) Corresponding retrieved J8 with 1%
noise added to (a)-(e). Each panel has width and height of 400 λ. (f) Retrieved phase map of
the full J8 input beam with 1% noise. The color bar shows phase in radians. (g) Difference
between retrieved and input phase map (the retrieved and input maps are very close and look
the same). (h) Zernike coefficients (up to J< 21) of the input phase map, retrieved phase
map, and retrieved phase map with 1% white noise added to input.

In Fig. 2, we demonstrate phase retrieval of a J0 beam with aberrations up to the 4th azimuthal
order (from astigmatism to quadrafoil, or Zernike polynomials with ANSI index J< 21 [40]).
The synthetic cases are calculated numerically from the non-paraxial diffraction integral

U(r, ϕ, z) =
1

iλz
exp

(︃
ikz +

ikr2

2z

)︃ ∫∫
dρdθρ Ẽ(ρ, θ)exp(ikL − ikρ tanα), (7)

where L = [z2 + r2 + ρ2 − 2ρrcos(θ − ϕ)]1/2 and α = 0.05 is the base angle of the conical
wavefront (or the angle of the Bessel beam rays with respect to the beam axis). The grid
size in the calculation is 20000(r)×400(ϕ), with ∆r = 0.25λ, ∆θ = π/200, where λ is
the wavelength. The input electric field is set as a flat-top, Ẽ(ρ, θ) = exp(iψ(ρ, θ)), with a
wavefront phase aberration including astigmatism, trefoil, quadrafoil and spherical aberration,
ψ(ρ, θ) = 5ρ̂2 cos(2θ + 2π/3) + 3ρ̂3 sin(3θ − π/6) + 2ρ̂4 cos(4θ − π/4) +

√
5(6ρ̂4 − 6ρ̂2 + 1),

where ρ̂ = ρ/ρmax and the maximum beam radius is ρmax = 5000λ.
Figure 2 panels (a)-(e) show the intensity of the synthetic J0 Bessel beam at axial positions

z/λ = 2.5, 5.0, 7.5, 10 and 12.5 × 104, with random noise up to 1% of the peak intensity added
in each frame. Figure 2 panels (a′)-(e′) show the corresponding retrieved J0 Bessel beams using
up to 30 modes (nb ≤ 30). The number of modes used in an intensity profile retrieval is increased
until the cost function η no longer decreases or it reaches a preset threshold (taken as 0.05 in
these results).
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The retrieved phase ψretr(ρ, θ) over the full input aperture is assembled from retrievals over
annuli 0 ≤ ρz ≤ ρmax and plotted in Fig. 2(f). The difference between the retrieved and
input phases ψretr(ρ, θ) − ψ(ρ, θ) is plotted in Fig. 2(g), with the small error indicating excellent
agreement. The larger error near the beam axis is possibly due to the inaccuracy of the
paraxial approximation. For Fig. 2(h), we decompose the wavefront phase ψ(ρ, θ) into Zernike
polynomials up to quadrafoil (ANSI index J< 21) and plot the coefficients for the cases of the
input beam and retrieved beams with and without 1% noise. The retrieval is clearly robust against
noise.

Phase retrieval also works well for high order Bessel beams, as seen in Fig. 3. Here we
impose the same aberrated phase ψ(ρ, θ) as earlier and take Ẽ(ρ, θ) = exp(i(ψ(ρ, θ) + qθ)),
with q = 8. Figure 3(a)-(e) show the resulting synthetic high order J8 Bessel beam for
z/λ = 2.5, 5.0, 7.5, 10 and 12.5 × 104, and panels (a′)-(e′) show the corresponding retrieved J8
Bessel beam with up to 30 modes (nb ≤ 30). The retrieved wavefront ψretr(ρ, θ) is plotted in
Fig. 3(f) and the error ψretr(ρ, θ) − ψ(ρ, θ) is plotted in Fig. 2(g). Overall, the standard deviation
of this error is 0.1 rad in both numerical examples.

3. Experiment

We applied our method to characterize and correct Bessel beams with a reflective axicon. As
shown in Fig. 4, a laser pulse (FWHM pulse width τ=10 ns and diameter 4 cm, λ0=800 nm)
focused by a custom gold coated reflective axicon with α = 0.05 base angle forms a J0 Bessel beam.
While the pulse is usually compressed to τ = 75 fs for our plasma waveguide experiments, it is
sufficient (and safer for the optics) to perform aberration corrections on the τ=10 ns uncompressed
pulse. For measurement of high order Bessel beams, we inserted an 8-level spiral phase plate
(with topological charge q= 16 and 69 mm clearance aperture) after mirror M2. The Bessel
intensity profile IM,z(r, ϕ) at z is measured by the partial reflection from a plate beamsplitter
through a 4 mm diameter hole at the center of the reflective axicon. The beamsplitter is scanned
along the entire focal line to extract the wavefront aberration ψretr(ρ, θ) over the full beam, as
discussed above. Phase front corrections to the pre-compressor beam are provided by a bimorph
deformable mirror with 48 piezo actuators (DM, NightN CDM48-300U). Leakage of the beam
through mirror M1 is sent through an imaging telescope (L1 and L2) to a shearing interferometry
wavefront sensor (SID4, Phasics) to characterize the DM response. The modified Bessel focus
is subsequently analyzed, and new correction terms added again to the DM, forming a closed
loop and iteratively optimizing the Bessel focus. As the correction concerns only the rotational
symmetry of the Bessel focus, spherical and coma aberrations are not considered here.

Since the deformable mirror has a limited number of modes (eigenmodes of the mirror transfer
matrix), we corrected only astigmatism and trefoil, which are due to axicon tilt and mechanical
stress from the axicon mount. In Fig. 5, we show a sequence of measured ((a) to (e)) and
retrieved ((a′) to (e′)) J0 Bessel beam focal profiles evenly spaced along z with no voltage on the
deformable mirror. The cost function η in these cases is no less than ∼0.1, limited by single-shot
image noise. The aberrated phase ψ(ρ, θ) over the full beam aperture is assembled from ψ(ρz, θ)
measured at different z positions and plotted in Fig. 5(f). The central part of the plot is missing
due to mechanical constraints of the optical mounts and the central hole of the input beam.
We decompose ψ(ρ, θ) into normalized Zernike polynomials in Fig. 5(d), with dominant terms
J= 3,5,6 and 9, which correspond to vertical/oblique astigmatism and vertical/oblique trefoil.

In practice, we found that correcting the Bessel beam profile only at the end of the axicon
focus (see Fig. 5(e), z = 190 mm) resulted in a good correction for the whole focal line (See
Fig. 6 and later discussion). This is because the surface aberration on the reflective axicons we
measured was typically most significant near the outer edge of the axicon aperture, attributable
to manufacturing error, or mechanical stress from mounting. Therefore, the wavefront aberration
can be described by primary terms (ρm cos(mθ) or ρm sin(mθ), m>1) and phase retrieval at the
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Camera
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M2
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Fig. 4. Experimental setup for Bessel beam correction. DM: deformable mirror. SID4:
shearing interferometry wavefront sensor. M1: Dielectric mirror. M2: Drilled dielectric
mirror with 1-cm diameter hole. SPP: spiral phase plate with topological charge q= 16. L1,
L2: convex lenses.

(f) (g)

Fig. 5. J0 Bessel beams with aberrations. (a)-(e) Measured focal intensity profiles at z=
62, 94, 126, 158 and 190 mm. The window size is 59µm × 59µm. (a′)-(e′) Retrieved focal
intensity profiles at the same z locations. (f) Reconstructed wavefront aberration ψretr over
the full beam aperture (g) Decomposition of wavefront aberration into Zernike polynomials.
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end of the focus is sufficient to measure the major contribution of the wavefront aberration. This
can be seen in Fig. 5(g) from the dependence of the Zernike polynomials. For an arbitrary phase
aberration, a measurement at a particular z only gives the wavefront aberration on a particular
annulus of the axicon. And because the aberration’s radial distribution does not necessarily
follow a single Zernike polynomial, correcting the aberration on a single annulus will only correct
the focus at the corresponding z location, not along the whole focal line. For correction over the
full axicon aperture, phase retrieval needs to be carried out in a closed-loop along the full focal
line and the correction involves higher order Zernike polynomials. Ultimately, the correction is
limited by the number of actuators on the DM.
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Fig. 6. Bessel focal profile optimized using a deformable mirror (DM). (a)-(e) Measured
focal profiles at z= 62,94,126,158 and 190 mm without correction by the DM. The window
size is 59µm×59µm. (a′)-(e′) Measured focal profiles at the same z locations with correction
by the DM. (a′′)-(e′′) Numerically retrieved, corrected focal profiles at the same z locations.
(f) Reconstructed wavefront aberration ψretr over the full beam aperture (g) Decomposition
of wavefront aberration into Zernike polynomials.

Having corrected the Bessel beam intensity profile at z = 190 mm, the profiles were recorded
at other z locations as shown in Fig. 6. Before correction, the Bessel beam intensity profiles from
Fig. 5(a)-(e) (reproduced in Fig. 6(a)-(e)) show astigmatism and trefoil. After correction (panels
6(a′)-(e′)), the profiles along the whole focal line are improved, showing a single intense on-axis
maximum for the beam. Panels 6(a′′)-(e′′) show the numerically retrieved, corrected intensity
profiles. In comparison to Fig. 5(f) and (g), the wavefront aberration and its corresponding
Zernike coefficients of Fig. 5(f) and (g) are much smaller. The Strehl ratio S of the system
[41] is expressed as the ratio of the central intensities of the aberrated and diffraction-limited
point spread function, S =

|︁|︁⟨︁eiψ⟩︁|︁|︁2 ≈ 1 − σ2
ψ. Here σ2

ψ =
⟨︁
ψ2⟩︁ − ⟨ψ⟩2 is the variance of the

aberration and ⟨ψ⟩ =
∫
|Ẽ(ρ, θ)|ψ(ρ, θ)ρdρdθ/

∫
|Ẽ(ρ, θ)|ρdρdθ. Consider a special case of

uniform illumination Ẽ(ρ, θ) = eiψ(ρ,θ) = exp(iB(ρ/ρmax)
m cos mθ), where B is a constant. The
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Strehl ratio at a particular z position is then S = J2
0(B(ρz/ρmax)

m), following Eq. (3). For the
worst case, typically corresponding to the edge of the aperture, S = J2

0(B). The Strehl ratios of
the Bessel beam at z = 190 mm before and after correction are S = 0.43 and S = 0.98, for a 2.3×
increase in focus intensity.

The phase retrieval and correction also works for high order Bessel beams. As with the J0
Bessel beam, we demonstrate phase retrieval of aberrated J16 Bessel beams in Fig. 7. As shown
in Fig. 7(a)-(e), the central rings are increasingly distorted with increasing wavefront distortions
such as astigmatism and trefoil. Applying the relevant Zernike polynomials to the deformable
mirror profile leads to a clear improvement of the focal quality along the full focal line, as shown
in Fig. 8(a′)-(e′). The average cost function η ranges from 0.1 to 0.2, limited by the single shot
image noise. The root mean square of the residual wavefront error after correction is 0.18 radian,
demonstrating the good quality of wavefront correction.
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Fig. 7. J16 Bessel beams with aberrations. (a)-(e) Measured focal intensity profiles at z=
39, 75, 111, 147 and 183 mm. The window size is 168µm× 168µm. (a′)-(e′) Retrieved focal
intensity profiles at the same z locations. (f) Reconstructed wavefront aberration ψretr over
the full beam aperture (g) Decomposition of wavefront aberration into Zernike polynomials.

In conclusion, we have presented a method for correcting aberrations in Bessel beam profiles
using phase information extracted from intensity profile measurements alone. The method
is validated both numerically and experimentally, demonstrating significant improvement of
Bessel beam intensity profiles. The method is based on the extraction of complex aberration
coefficients from nonlinear fitting of an analytic expression for an aberrated Bessel beam (Eq. (3))
to the measured profiles. The method can retrieve wavefront aberrations of arbitrary orders
described by Zernike polynomials, and a deformable mirror or SLM is capable of correcting such
aberrations regardless of their source. We have found that for the specific axicons tested, and
for our application of Bessel beams to plasma waveguide generation, only one intensity profile
measurement was needed, at the z-location where the profile was most distorted, to collect the
needed correction information.
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Fig. 8. J16 Bessel focal profile optimized using a deformable mirror (DM). (a)-(e) Measured
focal profiles at z= 39, 75, 111, 147 and 183 mm without correction by the DM. The window
size is 168µm× 168µm. (a′)-(e′) Measured focal profiles at z= 39, 75, 111, 147 and 183 mm
with correction by the DM. (a′′)-(e′′) Numerically retrieved, corrected focal profiles at the
same z locations. (f) Reconstructed wavefront aberration ψretr over the full beam aperture
(g) Decomposition of wavefront aberration into Zernike polynomials.
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