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Single-shot supercontinuum spectral interferometry is a powerful technique for measuring transient refractive
index changes. In principle, its time resolution is limited only by the available probe bandwidth. However, this
assumes that the phase extraction has sufficient spectral resolution and that the probe spectral phase is exactly
known. Using an analytical model for the spectral phase and amplitude modulation of a chirped probe pulse by a
weak transient phase perturbation, we show how the probe chirp and spectral resolution determine the achievable
time resolution. A simple, practical technique for precise in situ measurement of the probe spectral phase is
described in detail, and the sensitivity of the extracted temporal phase profile to uncertainty in the probe spectral
phase is demonstrated in numerical simulations. © 2016 Optical Society of America

OCIS codes: (120.3180) Interferometry; (320.7100) Ultrafast measurements.
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1. INTRODUCTION

Single-shot supercontinuum spectral interferometry (SSSI) is
used to measure the time- and space-dependent refractive index
shift induced in a medium by an intense pump pulse [1]. In this
method, two replica chirped supercontinuum (SC) pulses—
one a reference pulse that precedes the pump pulse through
the medium and the other a probe pulse that temporally over-
laps the pump—interfere in the spectral domain, as viewed in
the image plane of an imaging spectrometer. Fourier transform
analysis of the resulting spectral interferogram enables extrac-
tion of the pump-induced transient phase shift imposed on the
probe and, thus, the time-dependent refractive index shift. The
ultimate time resolution is approximately the inverse of the
bandwidth of the SC [1]. The SC pulse is typically generated
by filamentation of ultrashort 800 nm pulses in a high-pressure
Xe or SF6 cell [2–5], and its broad bandwidth (typically
>150 nm) enables a time resolution better than 10 fs. The
ability to resolve, on this time scale, ultrafast refractive index
transients induced by intense pump pulses was crucial for
recent measurements of the optical nonlinearity near the
ionization threshold [2,3], for cleanly distinguishing the elec-
tronic and inertial nonlinear responses in the molecular gases
N2, O2, H2, and D2 [4–6], and the first direct measurements,
for pump pulses in the mid-infrared, of the nonlinear refractive
index of gas phase atoms and molecules [7]. Other important
laser-driven dynamics, such as field ionization, can occur over
even shorter time scales, which raises the question of how close
to the ultimate theoretical time resolution is attainable
by SSSI.

In this paper, we show that pushing SSSI to its ultimate time
resolution requires extraction of the probe pulse’s frequency do-
main phase and amplitude with a spectral resolution that de-
pends on the magnitude of the probe chirp. It also requires
precise knowledge of the probe spectral phase. In this paper,
we also develop a simple, practical technique for in situ mea-
surement of the probe spectral phase, and the sensitivity of the
extracted transient phase shift to the probe spectral phase is
demonstrated analytically and with numerical simulations.

In most of our previous experiments using SSSI, the SC
spectral phase was determined only through the second order
(the group delay dispersion or GDD) by examining the fre-
quency dependence of the spectral phase shift on the
pump–probe time delay [1], which is described in the follow-
ing. This was sufficient for the time resolution required in those
experiments [2–5], where the fastest dynamics followed the la-
ser pulse envelope of FWHM > ∼ 40 fs. However, higher-
order corrections to the spectral phase improve the time
resolution of SSSI and enable measurements of even faster tran-
sients. Here, we show that easily measured changes in the probe
spectrum versus pump–probe delay can be used to measure the
SC spectral phase to arbitrary order. We demonstrate the effect
on the achievable time resolution of including successive orders
of spectral dispersion in the analysis.

2. BACKGROUND

We first describe SSSI in detail. A strong pump pulse
propagating along z in a medium induces a time- and
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space-dependent change in the refractive index Δn�x; y; z; t�,
which imparts a time-dependent phase shift,

ΔΦ�x; y; t� � k0

Z
Δn�x; y; z; t�dz ≈ k0LeffΔn�x; y; t�;

on a co-propagating chirped probe pulse, where Leff is the ef-
fective medium length and k0 is the probe central wavenumber.
Use of an imaging spectrometer enables 1D space-resolved
transient measurements ΔΦ�x; y0; t� in a single shot, where
x is aligned along the entrance slit and y0 is the transverse lo-
cation of the 1D x slice. Dropping the spatial dependence to
simplify the notation, the probe field is given by

Epr�t� � Epr�t�eiΔΦ�t�; (1)

where Epr (Epr) is the probe field perturbed (unperturbed) by
the pump pulse, and where ΔΦ�t� is real. The fields Epr and
Epr are expressed in the frequency domain as Epr�ω� �
jEpr�ω�jei�ϕs�ω��Δϕ�ω�� and Epr�ω� � jEpr�ω�jeiϕs�ω�, where
E�ω� � FfE�t�g is the Fourier transform of E�t�, ϕs�ω� is
the spectral phase of the unperturbed SC probe, and Δϕ�ω�
is the change in spectral phase induced by the pump. Using
Eq. (1), we find

ΔΦ�t� � Im

�
ln

�
F −1fjEpr�ω�jeiϕs�ω��iΔϕ�ω�g

F −1fjEpr�ω�jeiϕs�ω�g

��
; (2)

where F −1 denotes the inverse Fourier transform. Measure-
ments of four quantities are required to reconstruct the
time-domain phase shift: jEpr�ω�j, Δϕ�ω�, jEpr�ω�j, and
ϕs�ω�. The first is simply the unperturbed probe spectral mag-
nitude, which is easily found from the power spectrum
Spr�ω� ≡ jEpr�ω�j2. The next two are found from analysis
of the spectral interferogram [1,8,9].

The fourth quantity is the unperturbed probe spectral phase
ϕs�ω�. The probe pulse is chirped, mostly from dispersion in
the optics after the SC generation cell. As previously men-
tioned, in previous work, ϕs�ω� was found by examining
the dependence of the frequency domain phase shift Δϕ�ω�
on the pump–probe time delay in a nonlinear Kerr medium
[1]. The best fit of peak phase shift frequency versus delay
is linear, reflecting the leading quadratic term in the spectral
phase, ϕs�ω� � β2�ω − ωc�2, where ωc is an arbitrarily defined
central frequency, and β2 was found from the fit [1].

Here, we apply the same pump–probe delay procedure to
the differential probe power spectrum [10]:

ΔSpr�ω� ≡ jEpr�ω�j2 − jEpr�ω�j2;
which is a more easily measured quantity. We also show that,
for a sufficiently chirped probe pulse, we can measure higher-
order corrections to ϕs�ω�, making better SSSI time resolution
possible.

3. ANALYTICAL MODEL FOR SPECTRAL PHASE
AND AMPLITUDE PERTURBATION

The phase perturbation ΔΦ�t� imparted on the probe by the
pump-induced refractive index change depends on the nature
of the nonlinearity, which can be a combination of a nearly
instantaneous electronic response as in the noble gases, a de-
layed inertial response from rotations or vibrations in molecular

gases or condensed matter, or a cumulative nonlinearity from,
for example, ionization. For peak phase perturbations satisfying
jΔΦ�t�jmax ≪ 1, (which we can ensure experimentally by
keeping Leff small), eiΔΦ�t� ≈ 1� iΔΦ�t�, so Eq. (1) becomes
Epr�t� � Epr�t� � iΔΦ�t�Epr�t�. Taking the Fourier trans-
form gives

Epr�ω� � Epr�ω� �
i
2π

Z
∞

−∞
ΔΦ�ω − ω 0�Epr�ω 0�dω 0; (3)

where the spectral phase,

ϕs�ω� � β2�ωc��ω − ωc�2 � β3�ωc��ω − ωc�3 �…; (4)

is implicit to Epr�ω� and where the constant and linear phase
terms giving the absolute phase and time delay are neglected.

Example simulations, using Eq. (3), of the probe power
spectrum jEpr�ω�j2 in a medium with an instantaneous (elec-
tronic) nonlinearity are shown in Fig. 1. The probe’s nonlinear
phase shift isΔΦ�t� � 4πn2I�t�Leff∕λ, where I�t� is the pump
intensity peaking at 8 × 1013 W∕cm2, λ is the probe wave-
length, and where we use n2 � 10−19 cm2∕W for the Kerr co-
efficient and Leff � 0.4 mm for the effective interaction
length, all typical parameters in our experiments [3]. The pump
pulse is taken to be a 60 fs FWHMGaussian, and the SC probe
amplitude jEpr�ω�j is a Gaussian centered at 550 nm with
100 nm FWHM. This spectral width is easily achieved exper-
imentally by filamentation in an Xe gas cell. Figure 1(a) shows

(a)

(b)

(c)

(d)

Fig. 1. Numerical simulation of the effect of a short pulse on the
probe spectrum. (a) Normalized probe power spectrum with (solid
black) and without (dashed red) a 60 fs pump pulse. (b)–(d)
Numerically calculated differential probe spectrum ΔSpr�ω� (solid)
and the approximate expression [Eq. (5)] (dotted) for three values
of β2 and three pump–probe time delays.
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the probe spectrum with and without the pump pulse.
Figures 1(b), 1(c), and 1(d) show the differential probe spec-
trum ΔSpr�ω� for β2 � 1000, 2000, and 3000 fs2, respec-
tively, and βn � 0 for n > 2. Plots are shown for three
pump–probe time delays.

In order to understand the origin of the pump-induced os-
cillations in ΔSpr�ω� and explicitly show how the probe spec-
tral phase is extracted, we approximate the convolution integral
of Eq. (3) using the method of stationary phase. To do so, we
first note thatΔΦ�ω� � ΔΦ0�ω�eiωτp for a pump pulse at time
delay τp, where ΔΦ0�ω� is FfΔΦ�t�g at zero pump delay, so
that the integrand’s rapidly varying phase is ϕ�ω 0� �
ϕs�ω 0� � �ω − ω 0�τp. The integrand strongly oscillates in ω ex-
cept near ω0, where ϕ 0�ω 0 � ω0� � 0, or ϕ 0

s �ω0� � τp, so that
the dominant contribution to the integral in Eq. (3) occurs near
ω0, yielding

Epr�ω� ≈ Epr�ω�
− �i∕2π�ΔΦ�ω − ω0�Epr�ω0�eiπ∕4�π∕jβ2�ω0�j�1∕2;

an expression that is most accurate over bandwidths
jω − ω0j > ∼j1∕β2j1∕2, or for large chirps. To the lowest-order
in ΔΦ, the change in the probe power spectrum is, therefore,

ΔSpr�ω� ≈ −jΔΦ�ω − ω0�Epr�ω0�Epr�ω�j�πjβ2�ω0�j�−1∕2
× cos�ϕs�ω� − ϕs�ω0� � �ω0 − ω�τp � π∕4�: (5)

The pump-induced change in the probe spectral phase is

Δϕ�ω� ≈ ΔΦ�ω − ω0�
�

π

jβ2�ω0�j

�
Epr�ω0�
Epr�ω�

× cos�ϕs�ω� − ϕs�ω0� � �ω − ω0�τp − π∕4�: (6)

The accuracy of Eq. (5) is assessed in Figs. 1(b)–1(d),
where its curves (dotted lines) are compared with numerical
simulations of ΔSpr�ω� (solid lines). As expected, the approxi-
mation works best for large β2, but, in all cases, it reproduces
the general shape of ΔSpr�ω�, in particular the location of the
central minimum at ω � ω0. Comparison of simulations of
Δϕ�ω� with the approximation of Eq. (6), shown in Fig. 2,
shows a similar level of accuracy.

4. MEASURING THE PROBE SPECTRAL PHASE

Our technique for precise measurement of the spectral phase
consists simply of measuring ΔSpr�ω� versus pump–probe de-
lay τp and identifying the location of the central minimum ω0,
which is well reproduced by the analytical model described in
the previous section. As long as ϕ 0

s �ω� is monotonic, ϕ 0�ω0� �
τp�ω0� is single-valued. This can be ensured over a given fre-
quency interval for large enough β2 with respect to higher-order
coefficients βn. This equation is then directly integrated to find
ϕs�ω� or fit to

P
cn�ω − ωc�n to yield the dispersion coeffi-

cients βn � �n!�−1�∂nϕ∕∂ωn�ωc
� ncn−1 for n ≥ 2. One way

to understand how the technique works is described as follows:
Transient phase perturbation of the probe produces frequency
components over some bandwidth determined by the duration
of the phase perturbation. These components interfere with the
unperturbed probe components to produce spectral amplitude
oscillations. By measuring their dependence on the probe time
delay, we can find the group delay across the probe spectrum.
This technique is similar to well-known techniques often em-
ployed for characterizing compressors and stretchers [11,12]
and a recently developed technique that uses sum frequency
generation between a chirped pulse and a short pulse [13].

As an aside, we note that the SC spectral phase also could be
determined using pulse characterization techniques such as
SPIDER [14] or FROG [15]. However, each of these methods
requires a dedicated and complex apparatus, which can be chal-
lenging to implement for highly chirped, wide-bandwidth
pulses. In addition, these techniques require the pulse to propa-
gate through air, lenses, and beam splitters before measure-
ment, leading to potential systematic errors.

We next demonstrate the technique in experiments. The
experimental setup is the same as described in [3]. The
probe/reference SC is generated by filamentation of a 40 fs,
∼200 μJ pulse in a gas cell filled with 2.7 atm Xe. The
probe/reference beam is combined with the pump beam using
a dichroic mirror and focused on a thin gas target [2] inside a
vacuum chamber. The pump beam was focused at f ∕30 and
the probe/reference beam at f ∕150. Example data, using Ar
with a 50 fs pulse at a peak intensity of ∼60 TW∕cm2, below
the appearance of ionization [2], is shown in Fig. 3. Figure 3(a)
shows the probe spectra with (jEpr�ω�j2, solid black line) and
without (jEpr�ω�j2, dashed red line) the pump present, for a
pump–probe time delay we define as τp � 0, for which the
pump pulse overlaps with ω0 � 3.28 fs−1. The differential
probe spectrum ΔSpr�ω� is shown in Fig. 3(b) for τp � −1,
0, and 1 ps. A map of ΔSpr�ω� captured as a function of
pump–probe delay τp, in steps of 13.3 fs, scanned by a com-
puter-controlled stage, is shown in Fig. 3(c), with the location
of the central minimum following τp�ω0� � ϕ 0�ω0�. At each
delay,ΔSpr�ω� is formed as a multishot average of 40 difference
spectra. Note that if the spectral phase was purely quadratic, the
dependence would be linear. The curvature observed indicates
higher-order dispersion.

We find that the minimum order typically required
to achieve a good polynomial fit is third-order; from this data
set, we find β2 � 1956 fs2, β3 � 386 fs3, and β4 � 168 fs4.
The residual of the fit is shown in Fig. 3(d) for a third-
order polynomial (dashed red) and a fourth-order polynomial

Fig. 2. Numerical simulation of pump-induced change in the probe
spectral phase and comparison to Eq. (6), for the same parameters as
used in Fig. 1, for β2 � 1000 fs2.
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(solid black). Note that the technique is not restricted to a
polynomial spectral phase model [Eq. (4)]. Even with the
fourth-order polynomial fit, there are residual oscillations with
an amplitude of ∼0.2 rad. These oscillations can be neglected
or included in the extraction procedure. All that is required for
the measurement technique to work is a one-to-one relation-
ship between the pump–probe time delay and the probe
frequency within the frequency interval of interest. This de-
pends on the magnitude of β2 with respect to higher-order
spectral phase coefficients.

As described, the procedure for determining the probe spec-
tral phase involves a multishot delay scan, so it is crucial in SSSI
experiments to have a certain amount of shot-to-shot spectral
phase stability. A single-shot measurement of ΔSpr�ω� carries
information on the spectral phase of a region Δω of the probe
spectrum of order the pump pulse bandwidth, and this can be
used to test the local phase stability. The spectral locations of
the extrema of the oscillations in ΔSpr�ω� depend on ϕs�ω�, as
is clear in Eq. (5). The differential probe spectrum is shown for
40 consecutive shots in Fig. 4(a). If ϕs�ω� were unstable, one
would see the position of the oscillations shift from shot to shot.
Instead, we observe a very stable pattern. We can more precisely
assess this stability using Eq. (5), where the extrema occur at ω
satisfying nπ � ϕs�ω� − ϕs�ω0� � �ω − ω0�τp � π∕4, where n
is an integer. Thus, for each shot, we can find the values of
ϕs�ω� at the spectral locations of the extrema, as plotted in
Fig. 4(b), along with a second-order polynomial fit.

The extracted values of β2 from each shot, shown in
Fig. 4(c), are scattered (likely because of increased noise in
the single-shot spectra) but close to the above value of β2 �
1956 fs2 extracted from the wider spectrum fit to the averaged,
multishot curve of Fig. 3(c). We attribute the lower average
value of β2 observed in Fig. 4(c) to inaccuracy of the stationary
phase approximation model for ΔSpr�ω� [Eq. (5)]. It should be
noted that, for noise reduction, multiple interferograms are typ-
ically averaged together before phase extraction [16], so accu-
rate extraction requires knowledge of the average spectral phase,
which is exactly what the multishot technique described here
measures.

5. LIMITS ON SSSI TIME RESOLUTION

A. Limits Imposed By Accuracy of Spectral Phase
Determination

An important source of distortion in the extracted time domain
phase is uncertainty in the probe spectral phase measurement.
Distortion appears in the extracted temporal phase when the
spectral phase error within the affected part of the probe spec-
trum approaches 1 radian. The widthΔωt of the affected probe
spectrum is inversely proportional to the duration τw of the
pump-induced probe transient, Δωt ≈ 4π∕τw. This can be
used in Eq. (4) to find the maximum allowable error in the
spectral phase coefficients. To avoid distortion, the error in
the nth coefficient must satisfy Δβn < �τw∕π�n. As an example,
for a transient 10 fs long, the error in β2�β3� must be less than
10 fs2�32 fs3�. The shorter the phase transient, the greater the
required precision. This illustrates the need for precise charac-
terization of the probe spectral phase.

As a demonstration of the effect of error in the probe spec-
tral phase, Fig. 5 shows simulated time-domain phase traces for
a 10 fs phase perturbation, where the probe spectral phase is
given by Eq. (4), with spectral phase coefficients β2 �
500 fs2 and β3 � 100 fs3. The top (black) curve shows the ac-
tual phase shift. The blue curve shows the phase shift extracted
using the correct coefficients. The green curve shows the phase
shift extracted neglecting β3. The red curve shows the phase
shift extracted using a value of β2 5% larger.

B. Limits Imposed By Spectral Resolution

Another important and previously unrecognized practical con-
straint concerns the spectral resolution of the phase extraction.
The issue can be understood by examining Figs. 1 and 2. In
order to reconstruct the refractive index perturbation in the
time domain, one must be able to resolve the pump-induced
spectral oscillations in the spectral amplitude. As can be seen,

(a)

(b)

(c)

(d)

Fig. 3. Extraction of the spectral phase in Ar. (a) Example SC
spectra with the pump pulse present (solid black) and absent (dashed
red). (b) Differential probe spectrum for τp � −1, 0, and 1 ps.
(c) Differential probe spectrum as a function of pump–probe delay
τp. (d) Integrated residuals of a second-order (dashed red) and
third-order (solid black) polynomial fit of ϕ 0

s �τp�, corresponding to
the third- and fourth-order polynomial fits to ϕs�τp�.
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the oscillations become more rapid as jω − ω0j increases. This is
because the oscillations are primarily due to the cosine factor in
Eqs. (5) and (6), the argument of which is, to the lowest order,
quadratic in ω − ω0 because of the β2 term. Neglecting βn for
n > 2, the spectral period of the pump-induced oscillations is
approximated by Δωosc ≈ π∕jβ2�ω − ω0�j. The shortest meas-
urable pump-induced probe transient produces modulations
covering the entire SC bandwidth Δω. In this case, Δωmin

osc ≈
2π∕jβ2Δωj is the minimum spectral modulation period
produced (located on the edges of the SC spectrum). Thus,

to achieve the ultimate time resolution of SSSI, we require suf-
ficient spectral resolution in the phase and amplitude extracted
from the interferogram to resolve these oscillations.

The spectral resolution of spectral interferometry depends
on the probe/reference time delay τr. The period of the
probe/reference interference fringes is 2π∕τr . Assuming the in-
terference fringes are well resolved [17], the best achievable
spectral resolution in the extracted spectral phase and ampli-
tude is set by the Nyquist criterion to be twice the fringe spac-
ing or Δωmin

s � 4π∕τr. Note that the imaging spectrometer’s
resolution determines the maximum achievable τr and, thus,
sets Δωmin

s . The requirement that Δωmin
s < Δωmin

osc can be used
to derive a necessary condition for achieving the ultimate time
resolution:

jβ2Δωj <
τr
2
: (7)

The length of the chirped probe pulse is approximately
2jβ2Δωj; thus, Eq. (7) implies that the duration of the probe
and reference pulses must be less than the time delay be-
tween the probe and reference pulses. Using Δω ≈ 2π∕τw
for a phase transient of FWHM duration τw, an alternative
condition is

jβ2τ−1r j < τw
4π

: (8)

The consequence of not satisfying Eq. (8) is illustrated in
Fig. 6. Figure 6(a) shows the frequency domain amplitude

(a)

(b)

(c)

Fig. 4. Testing the local phase stability by analyzing single-shot dif-
ferential probe spectra. (a) Differential probe spectrum for 40 consecu-
tive laser shots. (b) Spectral locations of extrema for one shot, and a
polynomial fit. (c) The second-order phase parameter β2 found from
the fit as a function of shot.

Fig. 5. Simulated effect of uncertainty in the probe spectral phase.
Top black curve shows the actual 10 fs pump-induced phase transient.
Bottom three curves show, from top to bottom, the phase shift ex-
tracted assuming the correct probe dispersion parameters, neglecting
third-order dispersion, and using a second-order dispersion parameter
that is 5% too large.

(a)

(b)

Fig. 6. Illustration of the effect of insufficient spectral resolution in
the phase extraction. (a) Probe amplitude change ΔSpr�ω� for a 40 fs
pump pulse and a probe pulse with β2 � 1500 fs2 (top), for a 10 fs
pump pulse and a probe pulse with β2 � 1500 fs2 (middle), and for a
10 fs pump pulse and a probe pulse with β2 � 500 fs2 (bottom).
(b) Simulated extraction (solid lines) of time domain phase shift
for the three cases in (a), assuming a probe/reference time delay of
τr � 1 ps. Dotted lines show the actual time-domain phase shift.
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change for a Gaussian phase perturbation of duration
τw � 40 fs (top trace) and τw � 10 fs (middle and bottom
traces), and a probe pulse with β2 � 1500 fs2 (top and
middle traces) and β2 � 500 fs2 (bottom trace). Figure 6(b)
shows the extracted time domain phase shift corresponding
to the traces in Fig. 6(a), using τr � 1 ps. When β2∕τr is
too large, as is the case for the middle trace, oscillations ap-
pear before and after the main pulse, and the peak phase shift
is reduced. An optimized SSSI setup should have as little
glass as possible in the path after the generation of supercon-
tinuum to minimize β2, while maintaining enough chirp
so that the transient of interest is covered by the probe pulse
of duration 2β2Δω. Note that minimizing the length of
glass in the supercontinuum path also has the effect of
minimizing higher-order spectral phase coefficients. Thus,
monotonicity of ϕ 0

s �ω�, a requirement of the spectral phase
measurement technique presented in Section 4, is easily sat-
isfied in practice. The spectrometer resolution also should be
optimized so that the probe/reference time delay τr can be
maximized.

6. CONCLUSIONS

In summary, we have discussed how to optimize SSSI to
achieve its ultimate time resolution given by the inverse
probe bandwidth. Using a simple analytical model, we illus-
trated the effect of a small, transient phase perturbation on a
chirped probe pulse. We described a simple in situ technique
for measuring to arbitrary-order the spectral phase of chirped,
broadband probe pulses. Then, we illustrated the need for
precise measurement of the probe spectral phase for extrac-
tion of short phase transients. Finally, we derived a relation-
ship between the magnitude of the probe chirp, the time
delay between the probe and reference pulses, and the short-
est resolvable phase transient.
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