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Absolute measurement of the ultrafast nonlinear electronic and rovibrational
response in H2 and D2
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The electronic, rotational, and vibrational components of the ultrafast optical nonlinearity in H2 and D2 are
measured directly and absolutely at intensities up to the ionization threshold of ∼1014 W/cm2. As the most basic
nonlinear interactions of the simplest molecules exposed to high fields, these results constitute a benchmark for
high-field laser-matter theory and simulation.
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I. INTRODUCTION

The high-field nonlinear polarizability of diatomic
molecules is a topic of practical and fundamental importance.
From optical frequency conversion [1,2] to simulations and
experiments in high-intensity propagation [3–9], understand-
ing the atomic and molecular behavior under high laser fields
is crucial for applications. Unlike in monatomic gases, the
nonlinear molecular response cannot be characterized by a
single coefficient at a given optical frequency: processes at
several time scales contribute, so the response depends on
pulse duration [7,8,10–13]. At the fastest time scale, the laser
pulse width τ is shorter than the fundamental vibrational
period and the fastest rotational response time, τ � �−1

v �
�trot, where �v is the fundamental vibrational frequency
and �trot ∼ 2T/[jmax(jmax + 1)] is the fastest rotational time
scale, where T and jmax are the rotational revival period and
the quantum number of the maximally populated rotational
state. Optical laser excitation of vibrational and rotational
states can occur by two-photon Raman excitation, but for
commonly used ∼50−100-fs optical pump pulses, there
is insufficient laser bandwidth (��ω < 0.04 eV) to excite
vibrational modes in molecules of interest for atmospheric
propagation (��v ∼ 0.3 eV for N2), and only rotational
states are excited [13]. For example, �/�trot ∼ 0.03 eV in
N2, where jmax ∼ 10 at room temperature. However, for
femtosecond pulse filamentation in gases, significant pulse
self-shortening and spectral broadening can occur so as to
excite vibrational modes even in H2 (in which ��v ∼ 0.5 eV),
driven by pulse spikes thought to be as short as several
femtoseconds [14,15]. Nevertheless, to our knowledge there
has never been a controlled experiment directly measuring
the full, time-resolved electronic and rovibrational nonlinear
response of a light molecule.

Here, we measure the full absolute electronic and rovibra-
tional nonlinear response of H2 and D2 to intense ultrashort
optical pulses up to the ionization threshold of ∼1014 W/cm2.
We use the technique of single-shot supercontinuum spectral
interferometry (SSSI) [13,16]. The 40-fs pump pulse inducing
the nonlinear response is sufficiently short to impulsively
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drive the rotational nonlinearity but, on its own, cannot
drive vibrational modes as discussed above. However, the
vibrational component of the nonlinearity contributes to a
two-beam coupling phase shift and energy transfer [17–19],
even for a long pump pulse. We use this phase shift, which
is independent of the amplitude of a sufficiently weak probe
pulse, to also measure the vibrational component of the optical
nonlinearity.

The nonlinear response can be explored using single-beam
experiments [10,12,20], but pump-probe techniques allow
direct time-resolved observation of the response [13,19,21–23]
or the response reconstructed with an auxiliary model for
the pump spatiotemporal dependence [11,24,25]. Single-shot
techniques, in particular, eliminate laser pulse-to-pulse
fluctuations as a source of error [13,16,19,21–23,26].
However, it is crucial in pump-probe experiments to properly
account for two-beam coupling effects, as we recently showed
for plasma and rotational nonlinearities [19]. Two-beam
coupling for the case of a vibrational nonlinearity is a primary
focus of this paper.

II. EXPERIMENT

In our SSSI setup, a regenerative Ti:sapphire amplifier
produces 3-mJ, 40-fs pulses centered near 800 nm. Super-
continuum (SC) pulses covering the range 500 to 700 nm are
generated by weakly focusing a few hundred microjoules split
from the main pulse into a gas cell filled with approximately
2.5 atm SF6 or Xe. The SC pulse is strongly chirped (see
below) and split into probe and reference pulses separated by
2 ps, which are then collinearly combined with an 800-nm
pump beam using a dichroic mirror, with the reference pulse
earliest in time and the pump and probe pulses temporally
overlapping. The collinear pulses propagate through either a
thin laser-drilled stainless-steel gas flow tube in a vacuum
chamber or the backfilled chamber without the tube. The probe
pulse picks up the wavelength-dependent phase and amplitude
change induced in the H2 or D2 gas by the intense pump
pulse, which are then extracted from the spectral interference
pattern collected in an imaging spectrometer, which also
provides transverse one-dimensional (1D) spatial resolution (x
direction). The absolute nonlinear change in refractive index
�n(x,t) = (k0Leff)−1��(x,t) is then determined, where k0

is the probe central wave number, Leff is the effective gas
interaction length, and ��(x,t) is the space- and time-resolved
phase shift extracted from the spectral interferogram. Full
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details on SSSI and the determination of the absolute index
shift are found in Refs. [13,22].

An example of the full nonlinear response measured by
SSSI is shown in Fig. 1(a), which plots the phase shift
��(x,t) measured for H2 and D2 in a backfilled chamber
filled to ∼0.3 atm for a peak pump intensity of ∼46 TW/cm2

and pulse width 40 fs, where the probe pulse is polarized
parallel or perpendicular to the pump. At this intensity the
contribution of free electrons from ionization is negligible,
without a detectable long-time-scale negative phase shift
on the probe [21,23]. As can be seen, there is a prompt
response near the center of the pump envelope at t = 0,
with electronic and vibrational contributions (to be discussed),
followed by a modulated delayed response caused by the
beating of a coherent superposition of quantized rotational
states. For a peak pump intensity of ∼80 TW/cm2 (just below
the ionization thresholds of H2 and D2) and a thin gas target to
ensure a uniform axial pump intensity [22], we use the spatially
varying pump intensity imprinted on ��(x,t = 0) to plot the
phase shift as a function of pump intensity for the probe pulse
polarized parallel to the pump pulse in Fig. 1(b). As in N2

and the noble gases [21,23], the prompt nonlinear response of
H2 or D2 is linear in the intensity, with no saturation in the
electronic response observed below the ionization threshold,
implying that the nonlinear coefficients measured in this paper
apply up to that limit. As before [23], we define the ionization
threshold as the peak intensity level at which we observe a
long-lived negative probe phase shift above the noise floor.

III. ROTATIONAL RESPONSE

We first discuss the rotational response, as it solely
contributes for times long after the pump pulse. In H2 and
D2, it depends strongly on the pulse duration. The probe
phase shift ��(x = 0,t) is shown as a function of pump
pulse width in Figs. 2(a) and 2(b) as solid curves, for
fixed pump pulse energy of 34 μJ. For efficient excitation
of a long-lived rotational coherence, the pump pulse width
should be shorter than the characteristic response period.
Here, for a Gaussian pulse of duration τ , the efficiency of
excitation of the j → k rotational coherence is proportional
to e−τ 2(Ej −Ek )2/�

2
, and its contribution to the optical response

depends on the initial population in states j and k [13], where
the rotational energies, including the centrifugal correction, are
Ej = hcBj (j + 1) − hcDj 2(j + 1)2, where j is the rotational
quantum number, B is the rotational constant, and D is the
centrifugal constant. Note the reduced modulation amplitude
of the rotational mode beating as the pump pulse duration
increases; longer pulses become increasingly less efficient
at exciting the rotational coherences. The discrete Fourier
transform of ��(x = 0,t) for t > 200 fs for the shortest pulse
width of ∼40 fs is shown in Figs. 2(c) and 2(d). We observe
the j = 0 → 2 and 1 → 3 transitions in both H2 and D2 and,
additionally, the j = 2 → 4 and 3 → 5 transitions in D2.

In our determination of the absolute nonlinear response of
H2 and D2 to intense fields, it is important to note that all
parameters needed are provided by our SSSI measurements.
For the rotational component of the response, the needed
parameters are B, D, and �α = α‖ − α⊥, the molecular
polarizability anisotropy. First, the oscillation frequencies

FIG. 1. (Color online) (a) Pump-induced 1D space- and time-
resolved phase shift ��(x,t) for a 46 TW/cm2, 40-fs pulse in H2

and D2 for the pump Ee and probe Ep polarizations parallel and
perpendicular. To increase the signal to noise ratio [26], ��(x,t)
is extracted from the average of 200 single-shot interferograms. (b)
Intensity dependence of the peak phase shift in H2 (+) and D2 (×)
extracted from the spatial profile of the response ��(x,t = 0) for a
pump pulse of peak intensity ∼80 TW/cm2.

measured in Figs. 2(c) and 2(d) yield best fits of B = 58.9
(±3.0) cm−1, D = 0.05 (±0.02) cm−1 for H2 and B = 29.3
(±1.5) cm−1, D = 0.021 (±0.008) cm−1 for D2, in good
agreement with the literature values [27,28]. The dominant
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FIG. 2. (Color online) Experimental data on the rotational
molecular response in H2 and D2. Time-dependent phase shift for
Ee ‖ Ep as a function of pump pulse duration for (a) H2 and (b) D2.
Density-matrix simulations of the rotational phase response (using
fitted values of the rotational constants as described in the text)
are shown as dashed lines. The discrete Fourier transform (DFT)
of the phase shift at times after the 40-fs pump pulse for (c) H2 and
(d) D2, showing which rotational coherences are excited. The green
dashed curves in (c) and (d) show the DFT of the fitted density-matrix
simulations.

source of uncertainty in the measurements of B and D is
from the chirp of the probe pulse, which determines the
mapping between frequency and pump-probe delay [16].
Quantum-mechanical density-matrix simulations [13,29] of
the H2 and D2 rotational response (for t > 100 fs, after the
prompt response) employing these values of B and D are
shown in Fig. 2 as dashed lines, indicating excellent agreement.

Determination of �α, which scales [as (�α)2] the de-
pendence of the molecular polarizability on the rotational

response, requires an absolute measurement of �n(x,t).
Here, the experiment of Fig. 1 was repeated using a
calibrated thin gas target [22], and the refractive index
modulation for t > 200 fs was compared to density-matrix
simulations [13,29] of the rotational response to arrive at
best-fit values of �α = (3.0 ± 0.6) × 10−25 cm3 for H2 and
�α = (3.0 ± 0.4) × 10−25 cm3 for D2. These values are in
agreement with previous scattering-based measurements [30]
and calculations [31].

IV. VIBRATIONAL RESPONSE

The rotational contribution to the nonlinearity arises from
the increased ensemble polarizability as the initially randomly
oriented molecules are torqued into alignment with the optical
field [13]. Similarly, a vibrational contribution arises from
the optical force pushing the molecule’s constituent atoms
apart and is expressed as the dependence of the molecular
polarizability tensor α on changes Q in the internuclear
separation, α(Q) = α(0) + (∂α/∂Q)Q for Q small compared
to the equilibrium internuclear distance of <1 Å. The vi-
brational frequencies in H2 and D2 are in the ∼100 THz
range, so to observe vibrational excitation directly (as we
are able to do with the rotational excitation) one would need
a few-cycle optical pulse, as discussed earlier. For a pulse
longer than a few optical cycles, the vibrational response is
adiabatic. The laser-induced molecular stretch Q, and thus the
stretch-induced change in the polarizability, is proportional to
the pulse intensity, causing an effectively prompt response.
One could, in principle, infer the size of the vibrational
response by observing a reduced nonlinear refractive index for
a few-cycle pulse compared with a longer pulse [20]. It appears
impossible to distinguish the vibrational nonlinearity from the
electronic nonlinearity through pumping with a 40-fs pulse
alone. However, we are able to separate them in another way. In
a pump-probe experiment, interference between the pump and
probe beams leads to the generation of a nonlinear refractive
index grating, which modifies the nonlinear phase shift of the
probe beam. This two-beam coupling phase shift was recently
discussed in detail for the bound and free electronic and the
rotational components of the optical nonlinearity in diatomic
molecules [19]. Here, we use the two-beam coupling phase
shift from rovibrational modes to measure the rovibrational
component of the optical nonlinearity in H2 and D2.

We model the molecular interaction with a pump
plus probe field E(r,t) = (1/2)[êeAe(t)ei(ke ·r−ωet) +
êpAp(t)ei(kp ·r−ωpt)] + c.c., where subscripts e and p refer to
pump and probe, Ae(t) and Ap(t) are complex field envelopes
(for a weak probe |Ap/Ae| � 1), and we define �ω = ωp −
ωe. As described in the Appendix, for an ultrashort optical
pulse, the full rovibrational model [32] can be well approx-
imated by replacing the j -dependent vibrational frequencies
by a single vibrational mode of frequency �v , so that the total
vibrational nonlinear response appears as the polarization
Pvib(t) = N (∂α/∂Q)〈Q〉tE, where α = (1/3)α‖ + (2/3)α⊥,
N is the molecular density, and 〈Q〉t is the time-dependent
ensemble-averaged molecular stretch, given by

〈Q〉t ≈ − 1

4μ�v

∂α

∂Q

∫ t

−∞
sin[�v(t ′ − t)]E2dt ′, (1)
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where μ is the molecular reduced mass.
Inserting the expression for E into Eq. (1) and keeping

slowly varying terms up to first order in the probe field, we
find

〈Q〉t = 〈Q〉st + (〈Q〉gt ei�k·r + c.c.
)
, (2)

where �k = kp − ke, and

〈Q〉st = − 1

4μ�v

∂α

∂Q

∫ t

−∞
sin[�v(t ′ − t)]|Ae(t ′)|2dt ′, (3)

〈Q〉gt =− 1

8μ�v

∂α

∂Q

∫ t

−∞
sin[�v(t ′−t)]A∗

e (t ′)Ap(t ′)e−i�ωt ′dt ′.

(4)

The superscripts s and g denote smooth and grating [19,33].
The former refers to the ensemble averaged stretch induced
by the pump field only, and the latter refers to the stretch
contribution induced by interference between the pump and
probe fields. These stretch terms are the origin of the
vibrational nonlinear response contributing to the polarization
oscillating at frequencies near ωp (which is measured in SSSI),

Pvib
p (t)=N

∂α

∂Q

[〈Q〉st Ap(t)eikp ·r−iωpt +〈Q〉gt Ae(t)eikp ·r−iωet
]
.

(5)

For pump pulses of duration longer than the vibrational
period 2π�−1

v ∼ 8−12 fs in H2 and D2, which applies to
virtually all ultrashort-pulse optical light sources, the vibra-
tional response is effectively instantaneous. We therefore con-
sider the probe instantaneous nonlinear polarization Pinst

p (t) =
χeffAp(t)ei(kp ·r−ωpt), where the effective nonlinear susceptibil-
ity χeff is related to the nonlinear index shift by 2πχeff = �n =
n2Ie, with n2 split into electronic plus vibrational components:
n2 = n2,elec + n2,vib, with n2,vib = ns

2,vib + n
g

2,vib. Note that for
a nonresonant electronic response, the smooth and grating
terms are the same, so n2,elec = ns

2,elec + n
g

2,elec = 2ns
2,elec. The

nonlinear refractive index for a weak probe pulse is a factor of
2 larger than for a pulse acting on itself [19].

To gain immediate physical insight, we first consider the
limit of cw pulses. Then we have for the smooth component,
using Eq. (3),

〈Q〉st = − 1

4μ�v

∂α

∂Q
|Ae|2

∫ t

−∞
sin[�v(t ′ − t)]dt ′

= 1

4μ�2
v

∂α

∂Q
|Ae|2, (6)

and for the grating term, using Eq. (4),

〈Q〉gt ≈ − 1

4μ�v

∂α

∂Q
A∗

eAp

∫ t

−∞
sin[�v(t ′ − t)]e−i�ωt ′dt ′

≈ − 1

4μ
(
�ω2 − �2

v

) ∂α

∂Q
A∗

eApe−i�ωt . (7)

These expressions then yield

ns
2,vib = 4π2N

n0cμ�2
v

(
∂α

∂Q

)2

, (8)

n
g

2,vib = 4π2N

n0cμ
(
�2

v − �ω2
)
(

∂α

∂Q

)2

. (9)

Note that the vibrational nonlinear response picked up
by the probe is greatly enhanced by the grating term n

g

2,vib
for �ω ∼ �v , and we exploit the dependence on �ω/�v

of this resonant two-beam coupling effect to measure the

FIG. 3. (Color online) Phase shift of chirped SC probe vs �ω =
ωp,overlap − ωe. The measured probe spectral phase is φ(ω) = β2(ω −
ω0)2 + β3(ω − ω0)3, with β2 = 1675 fs2, β3 = 396 fs3, and ω0 =
3.05 fs−1. The time delay of the SC frequency component at ω (left
axes) is given by φ′(ω). (a) Supercontinuum interference spectrum
with variably delayed pump pulse superposed. The top axis shows the
time corresponding to each frequency component. (b) Experimental
and best-fit rovibrational simulation plots for (b) H2 and (c) D2. The
best-fit simulations enabled extraction of n2,elec and ∂α/∂Q, shown
in Table I.
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TABLE I. Measured electronic Kerr coefficient ns
2,elec at 1 atm (at probe wavelength of 600 nm and pump wavelength of 800 nm),

polarizability anisotropy �α, and polarizability derivative ∂α/∂Q. A comparison is made with previous experimental and theoretical work.
The rightmost column shows n2 estimates at 1 atm based on our experimental results for a long pulse at 800 nm.

ns
2,elec �α ∂α/∂Q n2 at 800 nm

(10−20 cm2/W) (10−25 cm3) (10−16 cm2) (10−20 cm2/W)

Gas This expt. Ref. [35] This expt. Ref. [30] This expt. Ref. [31] Ref. [39] n2,rot n2,vib n2,tot

H2 6.5 ± 1.0 6.37 3.0 ± 0.6 3.14 1.3 ± 0.2 1.24 1.30 ± 0.10 2.7 1.0 10.2
D2 5.8 ± 1.3 6.20 3.0 ± 0.4 2.99 1.4 ± 0.3 1.22 ± 0.10 3.9 1.2 10.9

vibrational component of the refractive index. We note that
in continuous-wave experiments, it is well known that the
vibrational nonlinearity depends strongly on such resonant
coupling [34,35]. Here, we use the effect in the ultrafast
domain to separate the electronic and vibrational contributions
to the prompt nonlinearity. The expression above for n

g

2,vib
is singular when �ω = �v because of the assumption of
infinitely long pulses. For a long, finite pump pulse of the form
Ae(t) = Ae0e

−t2/(2t2
e ) (where te  �−1

v ), it is straightforward
to derive a well-behaved expression for the grating vibrational
nonlinearity by integrating Eq. (3),

n
g

2,vib = 4π2Nte

n0cμ�v

[F (te(�ω − �v))

−F (te(�ω + �v))]
(

∂α

∂Q

)2

, (10)

where F (x) is the Dawson function.
A very useful representation of our resonant two-beam

coupling results is a two-dimensional (2D) plot of SC probe
spectral phase shift vs �ω = ωp,overlap − ωe, where ωp,overlap

is the probe frequency which overlaps in time with the pump
pulse, as shown schematically in Fig. 3(a). Measurements and
simulations of SC probe phase shift vs �ω in H2 are shown
in Fig. 3(b), and those for D2 are shown in Fig. 3(c). The
time delay of the SC frequency component at ω (left axes) is
given by φ′(ω), where φ(ω) is the chirped SC spectral phase
(see Fig. 3 caption). For each value of �ω, scanning top to
bottom in the plots (negative to positive delay) shows the SC
phase shift abruptly changing as the molecular nonlinearity is
excited by the arriving pump pulse. The initial perturbation
is dominated by the electronic and vibrational response,
followed at longer times by rotational revivals. Near �ω ∼
0.78 fs−1 in H2 (λp,overlap = 600 nm) and �ω ∼ 0.55 fs−1

in D2 (λp,overlap = 645 nm), the phase changes strongly,
consistent with resonant two-pulse coupling with molecular
resonances between the ground and first vibrational excited
states. The frequency of the nth vibrational state is given
by ωn = (n + 1/2)ωe − (n + 1/2)2ωexe, where ωe (not to be
confused with the pump central frequency) is the harmonic
frequency and ωexe is the first anharmonicity constant [27].
In H2, ωe = 0.829 fs−1 and ωexe = 0.023 fs−1, and in D2,
ωe = 0.567 fs−1 and ωexe = 0.012 fs−1 [28]. For the ground
to first excited vibrational state transition, �v = ωe − 2ωexe,
so the resonance is predicted to occur at �v = 0.783 fs−1 in H2

and �v = 0.543 fs−1 in D2, consistent with our experimental
data.

V. EXTRACTION OF NONLINEAR COEFFICIENTS

We previously found the rotational response parameters
�α, B, and D from the response at time delays following
the pump pulse. Fitting the one-mode vibrational simulation
to the measurements in Fig. 3 now enables extraction of the
two remaining nonlinear coefficients, n2,elec and ∂α/∂Q. The
best-fit coefficients are listed in Table I, with their associated
simulation results shown in the right-hand panels of Figs. 3(b)
and 3(c). The n2,elec and n2,vib values we find are consistent
with previous measurements using long, low-intensity pulses
based on harmonic generation [36], the optical Kerr effect [37],
and coherent anti-Stokes Raman scattering [38], and the values
of ∂α/∂Q are consistent with previous calculations [31] and
Raman scattering measurements [39]. The most important
source of error is the determination of the pump laser intensity,
which relies on accurate measurement of the spatial pump
beam profile at the gas target.

The total prompt (nonrotational) nonlinear refractive index
n2,prompt = 2ns

2,elec + ns
2,vib + n

g

2,vib experienced by the probe
in H2 is plotted as a function of �ω in Fig. 4(a), as
calculated for a 40-fs pump pulse and a broad chirped

FIG. 4. (Color online) Calculated prompt nonlinear index
n2,prompt = 2ns

2,elec + ns
2,vib + n

g

2,vib of H2 experienced by the probe
as a function of the pump-probe beat frequency �ω for a 40-fs
pulse centered at 800 nm, calculated using Eq. (10) (dashed blue)
and numerically (solid green). The electronic component 2ns

2,elec is
shown as a red dotted line for comparison.
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FIG. 5. (Color online) Pulse-width-dependent effective n2 in H2

[solid blue (dark gray) line] and D2 [solid green (light gray) line]
calculated from the experimental results. Horizontal dashed lines
show ns

2,elec, dotted lines show ns
2,elec + n2,vib, and dash-dotted lines

show ns
2,elec + n2,vib + n2,rot for H2 [blue (dark gray)] and D2 [green

(light gray)].

SC probe, both using the analytical expression [Eq. (10)]
and calculated numerically. The electronic and vibrational
nonlinear coefficients are taken from Table I. The electronic
component of the nonlinear index 2ns

2,elec is shown as a red
dashed line for comparison.

As described earlier, the nature of the rotational and
vibrational response depends on the pulse width; pulses that
are too long to impulsively excite rotational or vibrational
modes experience an effective adiabatic response. To illustrate
this, we calculate an intensity-weighted effective nonlinear
coefficient for a pulse of the form I (t) = I0g(t), where
g(t) = exp(−t2/t2

e ),

n2,eff = λ

2πLI0

∫ ∞
−∞ ��(t)g(t)dt∫ ∞

−∞ g(t)dt
, (11)

where λ is the laser wavelength, I (t) is the pulse intensity
envelope, and ��(t) is the calculated time-dependent phase
shift over an interaction length L. The effective Kerr coefficient
n2,eff is plotted as a function of pulse FWHM in H2 and D2 in
Fig. 5.

The electronic component ns
2,elec in each gas is shown as

dashed lines. It can be seen that even at the shortest pulse
durations simulated, the effective nonlinearity is larger than
ns

2,elec because of the vibrational contribution. Near 8 fs, n2,eff

is approximately ns
2,elec + n2,vib (shown as dotted lines). For

longer pulses, the rotational response contributes, and the
effective nonlinearity eventually levels off at ns

2,elec + n2,vib +
n2,rot (shown as dash-dotted lines).

An expression for the rotational adiabatic coefficient n2,rot,
analogous to the vibrational expression given here [Eq. (8)], is
given in Ref. [22]. Values of n2,rot and n2,vib and the total long-
pulse nonlinear coefficient n2,tot = ns

2,elec + n2,rot + n2,vib are
given in the rightmost columns of Table I. The long-pulse
coefficients n2,rot and n2,vib apply to pulses of duration greater
than 1/f , where f is the lowest-frequency vibrational or
rotational mode. Given the rotational-mode spectrum shown
in Figs. 2(c) and 2(d), the pulse duration above which the
rotational response can be considered adiabatic is ∼100 fs
in H2 and ∼200 fs in D2, in agreement with the results in
Fig. 5. Given the vibrational mode frequencies, the vibrational
adiabatic coefficient n2,vib should apply to pulses longer than
approximately ∼8 fs in H2 and ∼12 fs in D2. These arguments
support the results in Fig. 5.

VI. CONCLUSIONS

In summary, we have demonstrated single-shot measure-
ment of the full absolute electronic and rovibrational nonlinear
response of H2 and D2 to intense ultrashort optical pulses up
to the ionization threshold of ∼1014 W/cm2. The presence of
the electronic, rotational, and vibrational contributions all in
one set of 2D experimental traces enables the determination
of the relative contribution of each to the nonlinear response.
Importantly, one does not need a few-femtosecond pump pulse
to excite the vibrational nonlinearity; our pump-probe config-
uration promotes its excitation through two-beam coupling,
even for much longer pump pulses. The nonlinear coefficients
measured are applicable over a very wide range of laser
pulse widths and intensities below the ionization threshold,
and because they apply to the very simplest molecules, they
constitute a fundamental benchmark for theory and simulation.
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APPENDIX A: ROVIBRATIONAL MODEL

We consider a nonrigid rotor system for a diatomic molecule where the atoms are assumed to be bound by a spring with
a natural frequency �v . This assumption is valid as long as only the lowest two vibrational states are involved, which is a
very good approximation for describing the experimental conditions. We define Q as the change in atomic separation with
respect to equilibrium RE and θ and φ as polar and azimuthal angles, respectively. Eigenfunctions of the nonrigid rotor are [32]
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ψnjm(Q,θ,φ) = Fnj (Q)Ym
j (θ,φ), where

Fnj (Q) = 1

2nn!

(
2μ�v

π�

)1/4

exp

[
− μ�v

�

(
Q − D

B
REj (j + 1)

)2]
Hn

[(
2μ�v

�

)1/2(
Q − D

B
REj (j + 1)

)2]
, (A1)

Ym
j (θ,φ) is a spherical harmonic, and Hn(R) is a Hermite-Gaussian function. Here, n is the vibrational quantum number, j is

the total angular momentum quantum number, and m is the quantum number for angular momentum along the z direction. The
corresponding energies are

�ωnj = ��v

(
n + 1

2

)
+ �

2j (j + 1)

μR2
E

− �
4j 2(j + 1)2

�2
vμR6

E

. (A2)

We treat the optical field E as a perturbation, using the potential

V = −1

2
E2(α⊥ + �α cos2 θ ) − 1

2
E2 ∂α⊥

∂Q
Q − 1

2
E2 ∂�α⊥

∂Q
Q cos2 θ. (A3)

Here, α⊥ is the polarizability perpendicular to the optical axis, and �α is the polarizability anisotropy, both for the lowest
vibrational state (we assume that the molecular polarizability is independent of the rotational state).

To find the nonlinear optical response for the probe field parallel to the pump field, we need to calculate the polarization from
the time-dependent, ensemble-averaged induced dipole moment along the optical field direction,

P (t) = N〈p〉t =
(

α⊥ + �α〈cos2 θ〉t + ∂α⊥
∂Q

〈Q〉t + ∂�α

∂Q
〈Q cos2 θ〉t

)
E(t) (A4)

We find the expressions in angle brackets on the right-hand side from the density matrix ρ, assuming a thermally populated
initial state. It is sufficient to calculate the first-order perturbation solution ρ1 in V , which satisfies ∂ρ1

njmn′j ′m′/∂t = −i(ωnj −
ωn′j ′)ρ1

njmn′j ′m′ + (i/�)[ρ0,V ]njmn′j ′m′ .

1. Rotational response

The rotational response has been discussed in detail in previous papers [13,19], and except for the centrifugal change in
rotational energies, it is unaffected by the nonrigidness of the molecule. Therefore we just give the solution,

〈cos2 θ〉t = 1

3
+ 2

15

�α

�

∑
nj

j (j − 1)

2j − 1

(
ρ0

n,j,n,j

2j + 1
− ρ0

n,j−2,n,j−2

2j − 3

) ∫ t

−∞
sin[ωn,j,n,j−2(t ′ − t)]E2(t ′)dt ′, (A5)

where ωn,j,n′,j ′ = ωnj − ωn′j ′ and ρ0
n,j,n,j is the initial population in state (n,j ).

2. Rovibrational model

Using

〈n|Q|n′〉 =
(

�

4μ�v

)1/2

[(n′ + 1)δn,n′+1 + n′1/2δn,n′−1], (A6)

the purely vibrational term in the potential, in the basis of eigenfunctions, is

V vib
nn′ = −1

2

∂α⊥
∂Q

〈n|Q|n′〉E2 = −1

2

∂α⊥
∂Q

(
�

4μ�v

)1/2

[(n′ + 1)δn,n′+1 + n′1/2δn,n′−1]E2. (A7)

The nonzero first-order perturbation solutions for this term in the potential are

ρ1
n,n−1 = − i

2�

∂α⊥
∂Q

(
�

4μ�v

)1/2

n1/2
(
ρ0

n,n − ρ0
n−1,n−1

) ∫ t

−∞
exp[iωn,n−1t

′]E2(t ′)dt ′, (A8)

ρ1
n,n+1 = − i

2�

∂α⊥
∂Q

(
�

4μ�v

)1/2

(n + 1)1/2
(
ρ0

n,n − ρ0
n+1,n+1

) ∫ t

−∞
exp[iωn,n+1t

′]E2(t ′)dt ′. (A9)

In the basis of eigenfunctions, the rotational-vibrational term in the potential is

V rovib
njmn′j ′n′ = −1

2

∂�α

∂Q
〈n|Q cos2 θ |n′〉E2 (A10)

= −1

2

∂�α

∂Q

(
�

4μ�v

)1/2

[(n′ + 1)δn,n′+1 + n′1/2δn,n′−1]

[
Bm

+ (j ′)δj,j ′+2 + Bm
− (j ′)δj,j ′−2 +

(
1

3
+ Bm

0 (j ′)
)

δjj ′

]
E2,

(A11)
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where Bm
+ (j ), Bm

− (j ), and Bm
0 (j ) are given in [19]. The nonzero first-order perturbation solutions for this term in the potential are

ρn,j,n−1,j = Kn1/2

(
1

3
+ Bm

0 (j )

)(
ρ0

n,j,n,j − ρ0
n−1,j,n−1,j

) ∫ t

−∞
eiωn,j,n−1,j (t ′−t)E2(t ′)dt ′,

ρn,j,n+1,j = K(n + 1)1/2

(
1

3
+ Bm

0 (j )

)(
ρ0

n,j,n,j − ρ0
n+1,j,n+1,j

) ∫ t

−∞
eiωn,j,n+1,j (t ′−t)E2(t ′)dt ′,

ρn,j,n−1,j−2 = Kn1/2Bm
+ (j − 2)

(
ρ0

n,j,n,j − ρ0
n−1,j−2,n−1,j−2

) ∫ t

−∞
eiωn,j,n−1,j−2(t ′−t)E2(t ′)dt ′,

ρn,j,n+1,j−2 = K(n + 1)1/2Bm
+ (j − 2)

(
ρ0

n,j,n,j − ρ0
n+1,j,n+1,j

) ∫ t

−∞
eiωn,j,n+1,j−2(t ′−t)E2(t ′)dt ′,

ρn,j,n−1,j+2 = Kn1/2Bm
− (j + 2)

(
ρ0

n,j,n,j − ρ0
n−1,j+2,n−1,j+2

) ∫ t

−∞
eiωn,j,n−1,j+2(t ′−t)E2(t ′)dt ′,

ρn,j,n+1,j+2 = K(n + 1)1/2Bm
− (j + 2)

(
ρ0

n,j,n,j − ρ0
n+1,j+2,n+1,j+2

) ∫ t

−∞
eiωn,j,n+1,j+2(t ′−t)E2(t ′)dt ′,

where K = −i�1/2/[2�(4μ�v)1/2](∂�α/∂Q).
Adding all these terms and using 〈Q〉t = Tr[ρ1(t)Q],

〈Q〉t =
∑
n,j

n

4μ�v

(
∂α⊥
∂Q

+ 1

3

∂�α

∂Q

)(
ρ0

n,j,n,j − ρ0
n−1,j,n−1,j

) ∫ t

−∞
sin[ωn,j,n−1,j (t ′ − t)]E2dt ′. (A12)

Further assuming that only the lowest vibrational state is initially populated, i.e., ρ0
njnj = 0 for all n > 0, we find

〈Q〉t = −
∑

j

1

4μ�v

(
∂α⊥
∂Q

+ 1

3

∂�α

∂Q

)
ρ0

0,j,0,j

∫ t

−∞
sin[ω1,j,0,j (t ′ − t)]E2dt ′. (A13)

We can express this in terms of an isotropic polarizability derivative

∂α

∂Q
= ∂α⊥

∂Q
+ 1

3

∂�α

∂Q
, (A14)

as

〈Q〉t = −
∑

j

1

4M�v

∂α

∂Q
ρ0

0,j,0,j

∫ t

−∞
sin[ω1,j,0,j (t ′ − t)]E2dt ′. (A15)

Using 〈Q cos2 θ〉t = Tr[ρ1(t)Q cos2 θ ], we find

〈Q cos2 θ〉t = 1

4μ�v

∑
n,j

n

3

[
∂α⊥
∂Q

+ 1

3

(
1+ 4

5

j + 1

(2j − 1)(2j + 3)

)
∂�α

∂Q

](
ρ0

n,j,n,j − ρ0
n−1,j,n−1,j

) ∫ t

−∞
sin[ωn,j,n−1,j (t ′ − t)]E2dt ′

+ 1

4μ�v

∑
n,j

2

15

∂�α

∂Q

j (j − 1)

2j − 1

[
n

(
ρ0

n,j,n,j

2j + 1
− ρ0

n−1,j−2,n−1,j−2

2j − 3

) ∫ t

−∞
sin[ωn,j,n−1,j−2(t ′ − t)]E2dt ′

+ (n + 1)

(
ρ0

n,j,n,j

2j + 1
− ρ0

n+1,j−2,n+1,j−2

2j − 3

) ∫ t

−∞
sin[ωn,j,n+1,j−2(t ′ − t)]E2dt ′

]
. (A16)

Restricting the initial population to n = 0, we have

〈Q cos2 θ〉 = 1

4μ�v

∑
j

1

3

[
∂α⊥
∂Q

+ 1

3

(
1 + 4

5

j + 1

(2j − 1)(2j + 3)

)
∂�α

∂Q

](−ρ0
0,j,0,j

) ∫ t

−∞
sin[ω1,j,0,j (t ′ − t)]E2dt ′

+ 1

4μ�v

∑
j

2

15

∂�α

∂Q

j (j − 1)

2j − 1

[
− ρ0

0,j−2,0,j−2

2j − 3

∫ t

−∞
sin[ω1,j,0,j−2(t ′ − t)]E2dt ′

+ ρ0
0,j,0,j

2j + 1

∫ t

−∞
sin[ω0,j,1,j−2(t ′ − t)]E2dt ′

]
. (A17)
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Using the isotropic polarizability derivative as before,

〈Q cos2 θ〉 = − 1

4μ�v

∑
j

1

3

[
∂α

∂Q
+

(
4

15

j + 1

(2j − 1)(2j + 3)

)
∂�α

∂Q

]
ρ0

0,j,0,j

∫ t

−∞
sin[ω1,j,0,j (t ′ − t)]E2dt ′

+ 1

4μ�v

∑
j

2

15

∂�α

∂Q

j (j − 1)

2j − 1

[
ρ0

0,j−2,0,j−2

2j − 3

∫ t

−∞
sin[ω1,j,0,j−2(t ′ − t)]E2dt ′

− ρ0
0,j,0,j

2j + 1

∫ t

−∞
sin[ω0,j,1,j−2(t ′ − t)]E2dt ′

]
. (A18)

3. Total rovibrational model

Combining Eqs. (A15) and (A18), the rovibrational terms in Eq. (A4) are

〈Q〉∂α⊥
∂Q

+ 〈Q cos2 θ〉∂�α

∂Q
= − 1

4μ�v

{
∂α⊥
∂Q

∑
j

∂α

∂Q
ρ0

0,j,0,j

∫ t

−∞
sin[ω1,j,0,j (t ′ − t)]E2dt ′

+ ∂�α

∂Q

∑
j

1

3

[
∂α

∂Q
+

(
4

15

j + 1

(2j − 1)(2j + 3)

)
∂�α

∂Q

]
ρ0

0,j,0,j

∫ t

−∞
sin[ω1,j,0,j (t ′ − t)]E2dt ′

+ ∂�α

∂Q

∑
j

2

15

∂�α

∂Q

j (j − 1)

2j − 1

[
ρ0

0,j−2,0,j−2

2j − 3

∫ t

−∞
sin[ω1,j,0,j−2(t ′ − t)]E2dt ′

− ρ0
0,j,0,j

2j + 1

∫ t

−∞
sin[ω0,j,1,j−2(t ′ − t)]E2dt ′

]}
, (A19)

and we can group terms and simplify this to

〈Q〉∂α⊥
∂Q

+ 〈Q cos2 θ〉∂�α

∂Q
= − 1

4μ�v

{(
∂α

∂Q

)2 ∑
j

ρ0
0,j,0,j

∫ t

−∞
sin[ω1,j,0,j (t ′ − t)]E2dt ′

+
(

∂�α

∂Q

)2 ∑
j

(
4

45

j + 1

(2j − 1)(2j + 3)

)
ρ0

0,j,0,j

∫ t

−∞
sin[ω1,j,0,j (t ′ − t)]E2dt ′

+
(

∂�α

∂Q

)2 ∑
j

2

15

j (j − 1)

2j − 1

[
ρ0

0,j−2,0,j−2

2j − 3

∫ t

−∞
sin[ω1,j,0,j−2(t ′ − t)]E2dt ′

− ρ0
0,j,0,j

2j + 1

∫ t

−∞
sin[ω0,j,1,j−2(t ′ − t)]E2dt ′

]}
. (A20)

In calculating the vibrational polarization [see Eq. (A4)] for pump polarization parallel to the probe, we neglect the terms
containing ∂�α/∂Q because the magnitudes of ∂α/∂Q and ∂�α/∂Q are of the same order, and the terms containing ∂�α/∂Q

contain additional factors on the order of 1/10. This leads to

Pvib ≈ −
[

N

4μ�v

(
∂α

∂Q

)2 ∑
j

ρ0
0,j,0,j

∫ t

−∞
sin[ω1,j,0,j (t ′ − t)]E2dt ′

]
E. (A21)

If we assume that all of the vibrational frequencies connecting various j states ω1,j,0,j ≈ �v , we can use
∑

j ρ0,j,0,j = 1, yielding

Pvib ≈ −
[

N

4μ�v

(
∂α

∂Q

)2 ∫ t

−∞
sin[�v(t ′ − t)]E2dt ′

]
E (A22)

≈ N〈Q〉t
(

∂α

∂Q

)
E, (A23)

where 〈Q〉t is given by Eq. (1).
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Mücke, A. Pugzlys et al., Science 336, 1287 (2012).

[3] A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
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