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The energy gain in laser wakefield acceleration is ultimately limited by dephasing, occurring when
accelerated electrons outrun the accelerating phase of the wakefield. We apply quasi-phase-matching,
enabled by axially modulated plasma channels, to overcome this limitation. Theory and simulations are
presented showing that weakly relativistic laser intensities can drive significant electron energy gains.
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The ponderomotive force of a high-intensity, ultrashort
laser pulse displaces plasma electrons, exciting plasma
waves [1]. Realizing that the axial electric field associated
with the plasma wave far surpasses that of conventional
accelerators, Tajima and Dawson suggested harnessing the
wakefield for electron acceleration [2]. Since their seminal
paper, the promise of building smaller-scale, cheaper
“advanced accelerators” has led to a number of theoretical
advances [3–5] and experimental demonstrations [6–9] of
laser wakefield acceleration (LWFA). Several groups have
recently achieved LWFA energy gains of ∼2 GeV [10,11].
Without multiple stages, the energy gain in these experi-
ments is ultimately limited by dephasing, where electrons
outrun the accelerating phase of the wakefield.
The operating paradigm for recent nonlinear wakefield

acceleration experiments is to set the distance over which
the laser pulse energy is depleted by driving plasma waves
to the dephasing length, the distance over which the
accelerated electrons outrun the accelerating phase of the
wakefield [10,12]. Because the dephasing length scales as
Ld ∝ n−3=20 , where n0 is plasma density and the maximum
axial field is limited to the plasma wave breaking field,
Emax ∝ n1=20 , lower densities increase the maximum energy
gain of electrons: Δγ ∝ EmaxLd ∝ n−10 [5], where γ is the
relativistic factor. The laser pulse must also stay collimated
over the dephasing length. Self-guiding, where the trans-
verse ponderomotive force of the laser pulse bores a guiding
structure in the plasma, is one solution, but at lower density
it requires higher pulse powers, Psf ∝ n−10 for relativistic
self-focusing [5,12]. Alternatively, preformed plasma
waveguides [7,13,14] can be used, eliminating the power
dependence of the guiding condition.
Axial-density-modulated plasmas [15] have been sug-

gested for plasma accelerator injectors [16,17], quasi-phase-
matched direct laser acceleration of electrons [18–21], and
terahertz generation [22]. In an axially modulated plasma
waveguide [15], the guided mode is composed of spatial
harmonics whose associated phase velocities can be tuned
by varying the modulation period. Quasi-phase-matching
(QPM) refers tomatching the phase velocity of an individual
spatial harmonic to the electron velocity [18–21].

Here we investigate the application of QPM in modu-
lated plasma channels to LWFA (QPM-LWFA). The
frequency of the excited plasma wave, and consequently
its phase velocity, undergoes oscillations in the modulated
plasma. As a result, the plasma wave itself is composed of
spatial harmonics. By matching the modulation period to
the dephasing length, a relativistic electron can undergo
energy gain over several dephasing lengths. Furthermore,
QPM-LWFA can operate at much lower pulse energies
and provides a guiding structure for the laser pulse, thus
loosening the three energy gain limitations associated with
standard LWFA: dephasing, depletion, and diffraction.
We start by examining the electrostatic fields of ponder-

omotively driven plasma waves in a corrugated plasma
channel. The density profile of the plasma is modeled
as neðr; zÞ ¼ n0½1þ δ sinðkmzÞ� þ 1

2
n000r

2, where n0 is the
average on-axis density, δ is the modulation amplitude,
km ¼ 2π=λm is the wave number associated with modu-
lations of period λm, and n000 describes the curvature of the
channel. The transverse parabolic density profile provides
guiding for a laser pulse with an expð−1Þ field radius
wch ¼ ð2cÞ1=2ðme=2πe2n000Þ1=4, where c is the speed of
light in vacuum andme and e are the electron rest mass and
charge, respectively.
To illustrate the concept and to derive a scaling for the

energy gain, we consider a weakly relativistic laser pulse
propagating along the z axis with wavelength λ0 ¼ 2π=k0
and normalized vector potential a ¼ eA=mec. As the laser
pulse propagates through the plasma, its ponderomotive
force drives an electron plasma wave with a phase velocity
equal to the group velocity of the laser pulse. By using a
separation of time scales based on the disparity between
the laser pulse and plasma frequencies, the equation for the
wakefield in a nonuniform plasma is found from the fluid
and Maxwell's equations,

� ∂2

∂ξ2 þ k2pðr; zÞ
�
E ¼ −πeneðr; zÞ∇jaj2; (1)

where k2p ¼ ω2
p=c2 ¼ 4πe2ne=mec2 and ξ ¼ z − vgt is the

coordinate in a frame moving with the group velocity vg of
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the laser pulse. We are interested in the case of δ ≪ 1
such that vg is essentially constant, namely, vg=c≃ 1−
ðk2p=2k20Þ − ð4=k20w2

chÞ, where k2p0¼ω2
p0=c¼4πe2n0=mec2.

We assume a laser pulse of the form jaðξ; rÞj2 ¼
a20 expð−2r2=w2

chÞsin2ðπξ=cσÞ on the domain 0 < ξ < cσ
with temporal full width at half maximum (FWHM)
σFWHM ¼ σ=2 matched to the on-axis plasma period
σFWHM ¼ π=ωp0. For δ ≪ 1, the wakefields close to the
axis, r2 ≪ w2

ch, and after the laser pulse, ξ > cσ, are

Ez ¼ − π

8
a20
X
n

Jn

�
δkp0ðvgt − zÞ

2

�

× cos

�
kp0vgt − ðnkm þ kp0Þz

�
; (2a)

Er ¼ − a20
2kp0wch

�
r
wch

�X
n

Jn

�
δkp0ðvgt − zÞ

2

�

× sin

�
kp0vgt − ðnkm þ kp0Þz

�
; (2b)

where the fields have been normalized to the wave-
breaking field mecωp0=e. Equations (2) exhibit the decom-
position of the wakefields into spatial harmonics whose
amplitudes depend on the distance behind the head of the
laser pulse and whose phase velocities depend on the
modulation period.
Figure 1(a) shows the on-axis longitudinal electric field

Ez of a plasma wave driven by a low amplitude, jaj ≪ 1,
λ0 ¼ 800 nm laser pulse as a function of z − ct and z in a
corrugated plasma channel with n0 ¼ 7 × 1018 cm−3,
δ ¼ 0.04, wch ¼ 15 μm, and λm ¼ 5.0 mm. The pulse
duration and spot are matched to the density and channel
curvature, respectively. The wavy lines are the wakefield
phase fronts, while the red dashed line marks the path of the
on-axis peak of the (∼10 μm long) laser pulse. The pulse
slides back in the speed of light frame because vg < c. In a
uniform channel, the phase fronts are parallel to the group
velocity trajectory. In a corrugated channel, the pulse
passes through oscillating plasma density, causing the
wake phases to oscillate with respect to the pulse trajectory.
From Eqs. (2), the phase velocity vp;n of the wakefield’s

nth spatial harmonic is

vp;n
c

≃ 1 − k2p0
2k20

− 4

k20w
2
ch

− n
km
kp0

: (3)

The phase of the nth spatial harmonic can be made
stationary in the speed of light frame by setting the
modulation period to λm ¼ −2nλ3p0λ−20 ð1þ 8=k2p0w

2
chÞ−1,

where λp0 ¼ 2π=kp0. For the n ¼ −1 spatial harmonic, this
is equivalent to setting the modulation period equal to the
dephasing length Ld ¼ 2λ3p0λ

−2
0 ð1þ 8=k2p0w

2
chÞ−1 of stan-

dard LWFA. When λm ¼ Ld, an electron moving near the

speed of light along the channel axis experiences a near
constant axial acceleration from the n ¼ −1 spatial har-
monic, while the acceleration of all other spatial harmonics
time averages to zero.
The red curve of Fig. 1(b) is a lineout along the white

dashed curve of Fig. 1(a), in which λm ¼ Ld. For com-
parison, the black curve is a similar lineout for an unmodu-
lated plasma channel. These curves show the longitudinal
wakefield acting on an electron moving at nearly c. In both
cases the dominant axial field oscillates at the plasma
period, but the oscillations in the modulated channel clearly
contain additional harmonics. While the integral of the
axial field over a plasma period is zero in the uniform
channel, it is nonzero in the modulated channel, showing
that the modulated wakefield performs net work on a
relativistic electron even after the electron has traversed a
full plasma wavelength.
In Fig. 1(c), the phase space of axial momentum, Pz,

and speed of light frame coordinate is plotted for a
long, uniform beam of test electrons with an initial axial
momentum of 100 MeV=c accelerated over 2 cm. The
results were obtained from 2D particle-in-cell simulations
which we discuss further below. The pulse amplitude,
wavelength, and FWHM were a0 ¼ 0.25, λ0¼ 800 nm, and
σFWHM ¼ 30 fs, respectively, and the density parameters

FIG. 1 (color online). (a) On-axis wakefield in a modulated
plasma as a function of speed of light frame coordinate z − ct and
axial distance z. The wavy lines are the plasma wakefield phase
fronts, while the red dashed line marks the path of the on-axis
peak of the (∼10 μm long) laser pulse. (b) Axial wakefield
experienced by an electron moving with an axial velocity near the
speed of light at a position marked by the white dashed line in (a).
The red and black lines are the fields experienced in a modulated
and uniform plasma channel, respectively. (c) Phase space density
in the axial momentum speed of light frame plane after 2 mm of
interaction. The white line shows the amplitude of the n ¼ −1
spatial harmonic and the red line the envelope of the laser pulse.
(d) Predicted energy gain (black, left vertical axis) and matched
modulation period (red, right vertical scale) as a function of
average on-axis plasma density. Exact parameters are in the text.
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were the same as given above. The red curve indicates the
location of the laser pulse propagating to the right in the
figure, and the white curve indicates the normalized
amplitude of the n ¼ −1 spatial harmonic J−1. The plot
clearly shows that axial momentum gain is proportional
to the amplitude of the phase-matched spatial harmonic.
The spikes in momentum result from bunching of the
positively accelerated electrons in each half-period of the
plasma wave.
The energy gain of a relativistic electron accelerated by

the phase-matched harmonic can be found by integrating
dγ=dt ¼ −ωp0ðvz=cÞEz, where γ ¼ ½1þ P · P=m2

ec2�1=2 is
the electron's relativistic factor. Using Eq. (2a) and setting
λm ¼ Ld, we find

ΔγðzÞ≃ 1

4
πa20δ

−1 kp0
km

�
J0

�
1

2
δkmzþ

1

2
δkp0z0

�

− J0

�
1

2
δkp0z0

��
; (4)

where z0 is the initial axial position of an electron and the
pulse is initially peaked at z ¼ 0. The energy gain increases
with the laser amplitude through the larger wakefields
driven by the pulse. As expected, ΔγðzÞ → 0 as δ → 0:
Only the n ¼ 0 spatial harmonic is present in this limit.
The maximum acceleration will occur for electrons with
initial axial positions near the peak of the n ¼ −1 spatial
harmonic δkp0z0 ∼ −4. The value for δ is, however, limited:
Aside from experimental considerations such as density
uniformity, the peak of J−1 must occur within the length of
the plasma channel, Lch, such that δ can be no smaller than
δmin ∼ 4=kp0Lch. For Lch ¼ 2 cm and n0 ¼ 7 × 1018 cm−3,
δmin ¼ 4 × 10−4, much smaller than the value of δ ¼ 0.04
used here.
The energy gain in QPM-LWFA is eventually limited by

electrons outrunning the spatial harmonic envelope, the
white curve in Fig. 1(c), or pulse evolution and depletion.
One can show that for n ¼ −1 and δ ≫ δmin, the length
scale for harmonic envelope dephasing is L−1 ¼ 0.6δ−1Ld
for an electron starting at z0 ∼ −4=δkp0. For δ ¼ 0.04,
L−1 ¼ 15Ld, an order of magnitude larger than standard
LWFA. Based on L−1, the maximum energy gain of
QPM-LWFA is ΔγQ;max ≃ ð1=8Þ½1 − J0ð2Þ�a20δ−1kp0Ld.
Because of the approximate conservation of wave action
[23], the pulse depletion length and the length scale for
spectral redshifting-induced pulse shape modifications
are nearly equal: Ldep ∼ 4Lda−20 [4]. By setting Ldep ¼ L−1,
we can estimate the maximum amplitude and energy
gain for QPM-LWFA: a0;max ≃ 2.6δ1=2 and ΔγQ;max≃
ð7=8Þ½1 − J0ð2Þ�kp0Ld. For δ ¼ 0.04 this gives a0;max ≃
0.5 and ΔγQ;max ≃ 170, using our earlier parameters.
For the same parameters in a uniform plasma, the
dephasing-limited energy gain of LWFA is ΔγLWFA ¼
ðπ=16Þa20kp0Ld ∼ 34. For both QPM-LWFA and LWFA,
the maximum electron energy gain can be increased by

lowering the plasma density. We note that ΔγQ;max under-
predicts the energy gain observed in Fig. 1(c). This is
somewhat surprising, as the FWHM used for Fig. 1(c)
is longer than the matched value used for deriving Eq. (4).
As we will see, an enhancement in energy gain results from
the nonlinear compression of the laser pulse.
Figure 1(d) displays the modulation period required

for phase-matched acceleration by the n ¼ −1 spatial
harmonic and the energy gain after 2 cm as a function of
plasma density for δ ¼ 0.04. The energy initially incre-
ases because the wakefield amplitude increases with plasma
density. The decrease in energy results from the shortening
of the maximum acceleration length due to the inverse
density dependence kp0L−1 ∝ n−10 .
Our estimate of the energy gain assumed that the

electron's axial velocity was close enough to c that it
did not undergo sufficient phase slippage with respect to
the n ¼ −1 spatial harmonic. A condition on the minimum
axial momentum for which this assumption is valid, or
trapping condition, can be derived from the Hamiltonian of
an electron interacting with the n ¼ −1 spatial harmonic.
By using dγ=dt ¼ −ωp0ðvz=cÞEz and defining Φ ¼
kp0vgt − ðkp0 þ kmÞz, the Hamiltonian takes the form

H ¼ 1

8
πa20J1ð2Þ sinðΦÞ −

�
vg
c

�
ðγ2 − 1Þ1=2

þ
�
1 − km

kp0

�
γ; (5)

where Φ and γ are the conjugate dynamical variables
and the electron is assumed to be located near the peak
of the spatial harmonic during the trapping process
J1½δkp0ðvgt − zÞ=2� ∼ J1ð2Þ. Setting km ¼ 2π=Ld and
using the fact that H is a constant of the motion, we find
the threshold energy for trapping is γtr;Q ≃ ½4J1ð2ÞEmax�−1,
where Emax ¼ πa20=8. For a0 ¼ 0.25, this predicts a
trapping threshold of γtr;Q ≃ 18. For standard LWFA in
the linear regime the trapping threshold is given by
γtr;S=γg ≃ ð1þ γgEmaxÞ − ½ð1þ γgEmaxÞ2 − 1�1=2, where
γg ¼ ð1 − v2g=c2Þ−1=2 [24]. With the parameters specified
earlier, this predicts γtr;S ≃ 7. The increased trapping
threshold of QPM-LWFA can be overcome with additional
density tailoring to modify the plasma wave’s phase
velocity and other injection techniques [21,25–27].
Particle-in-cell simulations of quasi-phase-matched

laser wakefield acceleration were performed by using
TURBOWAVE, fully described elsewhere [28]. The fields,
particle trajectories, densities, and currents were calculated
on a 2D planar-Cartesian grid in a window moving at c.
The window dimensions were 77 μm× 438 μm with
512 × 16 384 cells in the transverse (x) and longitudinal
(z − ct) directions. The plasma density was ramped up
over 200 μm. After the initial ramp, the plasma density
followed neðx; zÞ ¼ n0½1þ δ sinðkmzÞ�ð1þ n000x

2=2Þ with

PRL 112, 134803 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
4 APRIL 2014

134803-3



n0 ¼ 7 × 1018 cm−3, n000 set to guide a linearly polarized
Gaussian mode with an expð−1Þ field radius wch ¼ 15 μm,
δ ¼ 0.04, and λm ¼ Ld ¼ 5.0 mm.
The laser pulse was initialized with linear polarization

in the x direction, a sine-squared temporal profile, and a
Gaussian transverse profile, with the same parameters as
above. The simulations were conducted for pulse ampli-
tudes of a0 ¼ 0.25ð0.5 TWÞ, a0 ¼ 0.375ð1.1 TWÞ, and
a0 ¼ 0.5ð1.9 TWÞ: pulse energies of only 14, 32, and
56 mJ. The pulse started with its front edge at the
beginning of the plasma. An electron bunch of initial axial
momentum Pz=mec ¼ 30, and transverse and longitudinal
Gaussian profiles with expð−1Þ radii of 4 and 8 μm, was
initialized with its center 4=δkp0 ¼ 200 μm behind the
peak of the laser pulse. The peak bunch density was nb ¼
3.5 × 1016 cm−3 with a total charge of 11 pC, parameters
typical of LWFA experiments [29]. We note that because
the laser mode is channel guided and the pulse powers
are lower than the critical power for self-focusing [30],
Psf ¼ 17ðω=ωp0Þ2 GW ¼ 4.2 TW, differences between
our 2D simulations and full 3D simulations are minimal.
Figure 2 displays snapshots of background plasma den-

sity, laser intensity, and electron bunch density at propa-
gation distances of 0.3, 2.6, and 5.2 mm for the a0 ¼ 0.25
pulse. The laser pulse enters the plasma channel and excites
a plasma wave, visible as the density oscillations trailing
the pulse. As the bunch electrons enter the channel, they
evolve in response to the wakefields. By 2.6 mm the bunch
electrons have been either laterally deflected or strongly
focused. The transverse field of the n ¼ −1 spatial
harmonic is also quasi-phase-matched to the electrons.
For off-axis electrons, the quasi-phase-matched transverse
field provides either focusing or defocusing depending on
the electron's initial longitudinal position. Comparing Ez
and Er in Eqs. (2), we see that there are longitudinal regions
of size λp=4 where electrons are both axially accelerated
and focused. Electrons starting in these favorable regions

remain on axis and continue to gain energy as they travel
behind the laser pulse.
Comparisons of the maximum energy gain resulting

from QPM-LWFA and standard LWFA are shown in Fig. 3.
When the modulation period is matched to the dephasing
length λm ¼ Ld, electrons gain energy over several dephas-
ing lengths. In a uniform channel, the electrons initially
gain energy but then lose energy as they outrun the
accelerating phase of the wake. The energy oscillations
in the modulated channel result from the partial deaccel-
eration of electrons as they “bucket jump” [31] into the next
phase of the plasma wave. After 1.5 cm, the energy gain
reaches ΔE ∼ 51 MeV for a0 ¼ 0.25, and ΔE ∼ 130 MeV
for a0¼ 0.375, but saturates at ΔE∼130MeV for
a0 ¼ 0.5, consistent with our earlier estimate of a0;max.
When a0 ¼ 0.5, nonlinear boring of the plasma density
causes the pulse width to oscillate irregularly. As a result,
the phase velocity of the plasma wave and hence the
dephasing length become nonstationary. The energy gain
saturation can be mitigated by varying the modulation
period along the channel or by choosing a pulse profile
whose spot size varies in time [32].
In spite of the simulation pulse duration being longer than

the matched duration, the energy gain for a0 ¼ 0.25 is
nearly that predicted by Eqs. (2). The nonlinear evolution of
the laser pulse boosts the acceleration by compressing the
initial unmatched pulse duration to a duration closer to the
matched value σFWHM ∼ λp=2 while, at the same time,
increasing the wakefield amplitude through the increase
in intensity. The pulse's ponderomotive force forms a local
nonlinear gradient with the electron density decreasing from
the front of the pulse backwards, causing the front and
middle of the pulse to undergo spectral redshifting and slide
backwards, forming an optical shock [33]. Figure 4 shows
the evolution of the pulse’s on-axis temporal FWHM and

FIG. 2 (color online). Background plasma density, laser pulse
intensity, and electron bunch density as a function of transverse
position and speed of light frame coordinate at three axial
distances: 0.3, 2.6, and 5.2 mm for a0 ¼ 0.25. The electron
plasma wave is noticeable as the ripples in the background
plasma density.

FIG. 3 (color online). Maximum energy gain as a function of
distance for electrons with initial axial momentum Pz=mec ¼ 30
accelerated in a modulated (solid line) and uniform channel
(dashed line). The black, red, and blue lines are for initial pulse
amplitudes of a0 ¼ 0.25, a0 ¼ 0.375, and a0 ¼ 0.5, respectively.
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on-axis intensity. Both quantities are normalized to their
initial values. The product of FWHM and peak intensity is
essentially constant, suggesting that the pulse is not under-
going significant nonlinear focusing or spot oscillations due
to unmatched guiding [32]. The inset in Fig. 4 displays the
growth in axial wakefield experienced by a relativistic
electron in the corrugated channel due to pulse compression.
In conclusion, we have shown that quasi-phase-matching

of laser wakefield acceleration, enabled by modulated
plasma channels, can overcome the dephasing limitation
of standard LWFA. With millijoule level pulses, QPM-
LWFA can result in energy gains an order of magnitude
higher than LWFA with identical parameters.

The authors thank D. Gordon for the use of
TURBOWAVE and continued fruitful collaboration and
P. Sprangle for useful discussions. This work was sup-
ported by DOE, DTRA, and NSF.
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