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Effect of two-beam coupling in strong-field optical pump-probe experiments
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Nonlinear optics experiments measuring phase shifts induced in a weak probe pulse by a strong pump pulse
must account for coherent effects that only occur when the pump and probe pulses are temporally overlapped. It
is well known that a weak probe beam experiences a greater phase shift from a strong pump beam than the pump
beam induces on itself. The physical mechanism behind the enhanced phase shift is diffraction of pump light
into the probe direction by a nonlinear refractive index grating produced by interference between the two beams.
For an instantaneous third-order response, the effect of the grating is to simply double the probe phase shift, but
when delayed nonlinearities are considered, the effect is more complex. A comprehensive treatment is given for
both degenerate and nondegenerate pump-probe experiments in noble and diatomic gases. Results of numerical
calculations are compared to a recent transient birefringence measurement [Loriot et al., Opt. Express 17, 13429
(2009)] and a recent spectral interferometry experiment [Wahlstrand et al., Phys. Rev. A 85, 043820 (2012)].
We also present results from two new experiments using spectrally resolved transient birefringence with 800 nm
pulses in Ar and air and degenerate chirped pulse spectral interferometry in Ar. Both experiments support the
interpretation of the negative birefringence at high intensity as arising from a plasma grating.
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I. INTRODUCTION

The intensity-dependent refractive index due to odd-order
optical nonlinearities is a fundamental phenomenon in non-
linear optics. Accurate knowledge of it is important for most
applications of intense laser pulses. In condensed matter, the
Z scan technique, a measurement of self-focusing [1], is
widely employed, but in gases it is difficult to use because the
interaction length cannot be easily characterized. Experiments
that measure the phase shift induced by a pump pulse on itself
in an extended medium [2–5] also require careful consideration
of propagation effects and plasma defocusing at high intensity
[6]. Accounting for these phenomena quantitatively requires
extensive theoretical modeling. For this reason, pump-probe
experiments, which measure the effect of cross phase mod-
ulation, have an important advantage. For a weak probe one
can at least be certain that the response of the medium is
linear in the probe field, and interpretation of the experimental
result appears relatively straightforward. However, in such an
experiment, a pump-probe interference grating always appears
in the medium, and pump light is diffracted by this grating into
the probe beam direction. One must properly account for the
contribution of this to the probe phase shift.

Depending on the relative phase between the diffracted
pump beam light and the probe beam, the probe can experience
a phase shift and/or an amplitude change [7]. This is the
physical mechanism responsible for the enhanced phase shift
in cross phase modulation compared to self-phase modulation.
The amplitude effect is often referred to as two-beam coupling
[8]. For an instantaneous optical Kerr nonlinearity, one finds
that the probe picks up twice the nonlinear phase shift of the
pump, but there is no net energy transfer. In general the result
depends on the details of the nonlinearity, such as the response
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time, and even on the details of the pulse shape, such as whether
or not it is chirped. A major goal of this paper is to provide a
comprehensive discussion of the phase shift imparted on the
probe pulse and the underlying physics.

We approach this topic in the context of a debate over
the higher-order Kerr effect, ignited by a recent degenerate
pump-probe experiment in Ar, N2, and O2 reported by Loriot
et al. [9]. A negative birefringence was observed at high pump
intensity when the pump and probe pulses overlapped in time.
It was concluded that the expansion of the nonlinear refractive
index in powers of the optical intensity I , �n = n2I + n4I

2 +
n6I

3 + · · · , is dominated by higher-order negative terms at
high intensity. Initially, the enhancement of the phase shift
in cross phase modulation was not considered, and the Kerr
coefficients for the effect of a pulse on itself were corrected
in an erratum [10]. However, this correction accounts only
for the nearly instantaneous bound electronic component of
the nonlinearity. An alternative explanation for the negative
birefringence observed at high intensity by Loriot et al. [9]
can be found by considering the diffraction effects caused
by the plasma grating generated when the pump intensity is
high enough to significantly ionize the gas [11]. Recently
an experiment in air using 400 nm pulses [12] found that
the intensity dependence of the negative birefringence was
consistent with a calculation of the plasma grating-induced
birefringence based on multiphoton ionization [11].

Here, we generalize the theory to allow the use of any
ionization model, account for grating effects from the molec-
ular alignment component of the nonlinearity, and extend the
theory to handle pulses of arbitrary frequency and chirp. We
also present experimental results from degenerate pump-probe
experiments demonstrating the probe phase shift originating
from plasma grating diffraction effects. We note that many
recent experiments have used a nondegenerate probe [12–18],
for which there is no plasma or rotational grating contribution
to the nonlinear phase shift [11,12], as detailed below. We
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first describe a theoretical framework for the calculation of the
outgoing probe field in a general pump-probe experiment. We
then numerically calculate the signal and compare the calcula-
tions to the Loriot et al. experiment [9], and to nondegenerate
spectral interferometry measurements [13,14,16–18]. Finally,
we present experimental results using spectrally resolved
transient birefringence and spectral interferometry with a
degenerate probe pulse.

II. THEORY

Initially reported, as far as we are aware, by Chiao,
Kelley, and Garmire [19], the grating-induced probe phase
shift (“weak wave retardation”) is related to “self-diffraction”
effects that have been often encountered in experiments in
condensed matter (for example, [20–23]). Two-beam coupling,
which typically refers to energy exchange between the pump
and probe beams, has been studied in depth [7,24–28].
However, the probe phase shift does not seem to have been
discussed except for instantaneous (n2) and photorefractive
nonlinearities [24,29].

Our general approach is similar to previous calculations
of two-beam energy coupling [7]. We assume two inci-
dent optical fields, a pump (“excitation”) pulse Ee(r,t) =
(1/2)Ae(r,t)eike ·r−iωet + c.c., and a probe pulse Einc

p (r,t) =
(1/2)Ainc

p (r,t)eikp ·r−iωpt + c.c. In the experiments in gases
that are the primary focus of this paper, the lowest optical
resonances are at roughly 10 eV, so the linear response of the
medium is nearly instantaneous, and the effect of dispersion
over a typical interaction length of a few mm is negligible.
We include the linear response of the neutral, isotropic gas in
a constant real refractive index n0 and group the rest of the
response in a nonlinear polarization PNL. We solve the wave
equation

∇2E − n2
0

c2

∂2E
∂t2

= 4π

c2

∂2PNL

∂t2
, (1)

in the interaction region, with the incident fields as an initial
condition.

In experiments, the probe beam is isolated from the
pump beam spatially [9,12] and/or by frequency filtering
[16–20]. In the calculation we are therefore interested
only in terms that propagate in the direction kp and os-
cillate at frequencies near ωp. This outgoing probe field
is Ep(r,t) = (1/2)Ap(r,t)eikp ·r−iωpt + c.c. We define kp =
kp ẑ, ke = ke(ẑ cos θ + ŷ sin θ ), and linearly polarized incident
pump and probe envelopes Ae = x̂Ae and Ainc

p = x̂Ainc
x +

ŷAinc
y . The outgoing probe envelope, which is in general not

linearly polarized, is decomposed according to Ap = x̂Ax +
ŷAy . To allow for chirped pulses to be handled, Ae and Ainc

p

are complex. We neglect diffraction and nonlinear propagation
effects on the pump pulse. The primary pump depletion
mechanisms are ionization and pumping of rotational states,
which are negligible for the intensities and interaction lengths
used in the experiments to which we compare our calculations.

The interaction between pump and probe beams occurs
near the waists of nearly Gaussian beam profiles, and in
practical experimental implementations the beam waist is
much larger than the wavelength of the light. The transverse
derivatives ∂2/∂x2 and ∂2/∂y2 in ∇2 are thus negligible in the

interaction region, and the left side of Eq. (1), keeping only
terms propagating in the probe direction, becomes (omitting
the complex conjugate)

eikpz−iωpt

2

[
−k2

pAp + 2ikp

∂Ap

∂z
+ ∂2Ap

∂z2

− n2
0

c2

(
−ω2

pAp − 2iωp

∂Ap

∂t
+ ∂2Ap

∂t2

)]
.

The pulses simulated are many cycles long (40 fs and
above), so the slowly varying envelope approximation (SVEA)
may be employed, using |∂2Ap/∂t2| � |ωp∂Ap/∂t | and
|∂2Ap/∂z2| � |kp∂Ap/∂z|. Using kp = n0ωp/c, we have

kp

(
in0

c

∂Ap

∂t
+ i

∂Ap

∂z

)
eikpz−iωpt = 4π

c2

∂2PNL,p

∂t2
, (2)

where PNL,p includes only terms in PNL containing eikp ·r−iωpt

(as only they significantly affect the probe field).
We next derive expressions for the polarization PNL,p due

to the nonlinear interaction of the pump and probe pulses with
the medium. We assume PNL = Pel + Ppl + Prot, where Pel is
the bound electronic nonlinearity, Ppl is the plasma (ionization
or free electron) nonlinearity, and Prot is the nonlinearity due
to the rotational response (molecular alignment).

A. Electronic nonlinearity

Cross phase modulation of a weak beam due to a third-order
nonlinearity is well known and is treated in nonlinear optics
textbooks (e.g., [8]). We provide details here in order to make a
clear connection to the more complicated nonlinearities arising
from ionization and molecular alignment considered later.
Assuming only a third-order contribution to the polarization
and a uniform medium, we have

(Pel)i (r,t) =
∫∫∫

χ
(3)
ijkl(t − t1,t − t2,t − t3)Ej (r,t1)

×Ek(r,t2)El(r,t3)dt1dt2dt3,

where χ (3) is the third-order nonlinear response function.
As all electronic resonances are far higher in energy than
h̄ωe and h̄ωp, to a good approximation χ (3)(t − t1,t − t2,t −
t3) ≈ χ (3)δ(t − t1)δ(t − t2)δ(t − t3). The nonlinear electronic
component of the polarization then simplifies to

(Pel)i(r,t) = χ
(3)
ijklEj (r,t)Ek(r,t)El(r,t). (3)

We use the total field Ee + Ep in Eq. (3). We emphasize
that only the terms propagating in the kp direction, which
are proportional to eikp ·r−iωpt , contribute to the signal in
the experiment. The terms proportional to eike ·r−iωet lead to
changes in the phase and amplitude of the pump field, which
we neglect. Terms proportional to ei(2ke−kp)·r−i(ωe−ωp)t , and
ei(2kp−ke)·r−i(ωp−ωe)t , lead to optical fields that do not reach
the detector in properly designed pump-probe experiments. In
degenerate experiments the probe beam is isolated spatially,
and in nondegenerate experiments, where typically the pump
and probe beams are collinear, the probe beam is isolated
spectrally. Terms proportional to ei(3ke)·r−i(3ωe)t are responsible
for third-harmonic generation. We do not include the effective
nonlinear refractive index caused by harmonic generation
through cascading [30]. For ∼0.1 atm Ar, N2, and O2 and
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typical interaction lengths of a few mm used in experiments,
harmonic cascading from χ (3), which causes a negative
effective n4, is negligible in the components of air [30].

In the SVEA, it is shown in Appendix A that, defining
the Kerr coefficient n2 = 12π2χ (3)

xxxx/(n2
0c), we have for the x

component of the nonlinear polarization term,

4π

c2

∂2(Pel)x
∂t2

= 2n0n2ωp

c2

(
−ωpIeAx − 2i

∂Ie

∂t
Ax − 2iIe

∂Ax

∂t

)
×eikp ·r−iωpt , (4)

where Ie = n0c/(8π )|Ae|2 is the pump intensity. Off-diagonal
elements of χ (3) are responsible for the y component of
the polarization, and in an isotropic medium, far away from
resonances,

4π

c2

∂2(Pel)y
∂t2

= 2n0n2ωp

3c2

(
−ωpIeAy − 2i

∂Ie

∂t
Ay − 2iIe

∂Ay

∂t

)
× eikp ·r−iωpt . (5)

Details are given in Appendix A.
Putting Eq. (4) in Eq. (2), we have

∂Ax

∂z
+ n0

c

∂Ax

∂t
= 2n2

c

(
iωpIe − 2

∂Ie

∂t

)
Ax − 4n2

c
Ie

∂Ax

∂t
,

where we have used ωp/kp = c/n0. Defining Ax = |Ax |ei	x ,
one can show that the nonlinear change in phase as the probe
propagates through the interaction region is

∂	x

∂z
− n0

c

∂	x

∂t
= kp(2n2Ie). (6)

Thus, the effective Kerr nonlinear refractive index for the probe
is found to be �ncross

K = 2n2Ie, twice as large as the change
in nonlinear index calculated for the pump beam on itself,
�nK = n2Ie. The phase shift of the probe is enhanced by
a factor of 2 regardless of whether the probe is degenerate
or nondegenerate with the pump. Similar calculations using
higher-order response functions predict enhanced probe phase
shifts for the higher-order Kerr effect due to χ (5), χ (7), etc. [10].

The factor of 2 enhancement of the Kerr phase shift of
a weak probe due to cross phase modulation compared with
the phase shift of the pump due to self-phase modulation can
be explained physically by diffraction from a nonlinear index
grating [7,11]. To understand this, it is helpful to consider the
problem in a different, less rigorous way. The total intensity
is, in the limit of a weak probe,

I (r,t) ∼= n0c

8π
[|Ae|2 + (A∗

eAxe
i�k·r−i�ωt + c.c.)], (7)

where �k = kp − ke and �ω = ωp − ωe. Interference of
the pump and probe beams causes a sinusoidal modulation
of the total intensity (the terms in parentheses) where the
beams cross. When inserted into �nK = n2I , we find �nK =
�ns

K + (�n
g

Kei�k·r−i�ωt + c.c.), where �ns
K = n2Ie is the

“smooth” nonlinear index and �n
g

K = n2n0c/(8π )A∗
eAx is

the “grating” nonlinear index. The x component of the
polarization due to this nonlinear refractive index is (Pel)x =

[�nKn0/(2π )]Ex . The terms that contain eikp ·r−iωpt are

(Pel)x = n0

4π

(
�ns

KAxe
ikp ·r−iωpt

+�n
g

Kei�k·r−i�ωtAee
ike ·r−iωet

)
= n0

4π

(
n2IeAxe

ikp ·r−iωpt

+ n2
n0c

8π
|Ae|2Axe

i(ke+�k)·r−i(ωe+�ω)t

)

= n0

4π
(n2IeAxe

ikp ·r−iωpt + n2IeAxe
ikp ·r−iωpt ). (8)

Taking the second derivative with respect to time and applying
the SVEA leads to Eq. (4). The smooth component �ns

K

produces the same Kerr phase shift in the probe field as
the pump induces on itself, and the grating component �n

g

K

combines with the pump field to produce an identical phase
shift in the probe field, doubling the overall response.

Pump light is diffracted by the nonlinear index grating
into the probe path with just the right phase and amplitude
to produce a doubling in the probe phase shift. Probe light
is also diffracted into the pump beam direction, and no net
energy transfer occurs. The extra probe phase shift from the
grating is independent of the magnitude of the probe field,
since the index modulation scales with the probe field. When
ωe �= ωp, the Kerr grating moves in time as well as space. The
diffracted pump light at frequency ωe is frequency shifted to
exactly match the probe light at frequency ωp, and the factor
of 2 enhancement in the phase shift still occurs. Note that
the crossing angle θ does not appear in Eqs. (4) and (5); for
ωe �= ωp the same factor of 2 enhancement in the probe phase
shift occurs even for θ = 0, where there is no transverse spatial
grating.

B. Plasma nonlinearity

Ionization of atoms and molecules by the intense optical
field frees electrons, which have a strong negative polariz-
ability. This causes the refractive index to change with time
during the pump pulse. We calculated cross phase modulation
effects from this plasma response previously assuming a
multiphoton ionization model [11]. Here we generalize to
the case of an ionization rate w(I ) that depends only on
the cycle averaged intensity, I . Simple ionization models
exist that allow coverage of the multiphoton and tunneling
limits [31,32], as well as the intermediate intensity regime
where laser filamentation typically occurs in gases. Note that
our treatment here neglects harmonic generation, including
that arising from the time-dependent ionization rate within an
optical cycle (for example, [33–35]). As mentioned previously,
harmonic generation leads to an effective nonlinear refractive
index through cascading [30], but it is negligible for the
experimental geometries considered.

The presence of free electrons leads to a polarization term

∂2Ppl

∂t2
= e2

me

Ne(r,t)E(r,t),

where Ne is the electron density. The ionization rate is a
function of time and space, and yields the electron density
through dNe/dt = Naw(I (r,t)), where Na is the number of
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atoms or molecules per cm3. Using the total intensity given by
Eq. (7) we have

w(I (r,t)) ∼= w(Ie(r,t)) + n0c

8π

×
[

dw

dI

∣∣∣∣
Ie(r,t)

A∗
e (r,t)Ax(r,t)ei�k·r−i�ωt + c.c.

]
.

In analogy with the discussion in the previous section, the
total free electron density can be split into smooth and grating
terms Ne = Ns

e + (Ng
e ei�k·r + c.c.), where the smooth term is

Ns
e (r,t) = Na

∫ t

−∞
w(Ie(r,t ′))dt ′,

and the grating term is

Ng
e (r,t) = n0c

8π
Na

∫ t

−∞

dw

dI

∣∣∣∣
Ie(r,t ′)

A∗
e (r,t ′)Ax(r,t ′)e−i�ωt ′dt ′.

(9)

Note that we have assumed the weak ionization limit
(i.e., neglecting depletion of the neutral atom population),
which is a good approximation for the experiments we
compare to. The integral in Eq. (9) is suppressed when
ωp �= ωe.

As described previously, we are interested only in the terms
containing eikp ·r, as only they contribute to the signal in the
probe beam direction. These are

∂2Ppl

∂t2
= e2

me

[
Ns

e (r,t)Ap(r,t)eikp ·r−iωpt

+Ng
e (r,t)Ae(r,t)eikp ·r−iωet

]
. (10)

The smooth term causes a phase shift in the probe pulse,
consistent with a change in index �n = −Ne/2Ncr, where
Ncr is the critical density. The pump beam combines with the
grating term N

g
e to create a polarization source propagating in

the probe direction. In the calculations shown later we shall
find that the main result of the grating term is a negative phase
shift for the probe polarization component parallel to the pump
polarization [11]. The grating phase shift only appears when
ωp ≈ ωe.

C. Rotational nonlinearity

In molecular gases, an intense laser field applies a torque
to the molecules, partially aligning them with the optical
field [36–40]. The effective third-order nonlinearity due to this
alignment can be an important, even dominant part of the total
nonlinearity in air for intensities below the ionization thresh-
old [14,17]. The nonlinear rotational response comes about
because in diatomic molecules the polarizability depends on
the angle between the laser field direction and the molecular
axis. For an angle θ between the laser polarization and the
molecular axis, the effective polarizability can be written
as αeff = α⊥ + �α cos2 θ , where α⊥ is the polarizability for
the optical field perpendicular to the molecular axis and
�α = α‖ − α⊥ is the polarizability anisotropy, the difference
in polarizability for light polarized parallel and perpendicular
to the molecular axis. In a linearly polarized optical field, the
molecules tend to align into the field in order to minimize

their energy, but because of rotational inertia, there is a time
lag. With a strong optical field, the alignment of molecules
causes the linear susceptibility to change as a function of
time, leading to an effective odd-order nonlinearity. To lowest
order the rotational response is linear in the pulse energy. The
case of a linearly polarized field has been considered in detail
previously [2,14].

For pump and probe beams of differing polarization, it will
be shown here that the calculation has additional complexity.
The molecular orientation-dependent dipole moment induced
by the optical field is p = αE, where α is the polarizability
tensor. Since the pump and probe fields are assumed to
be polarized in the xy plane, we only need consider the
components of the induced dipole moment in that plane. These
are

px = (α⊥ + �α cos2 θ )[Ee(t) + Ep(t)]x
+�α sin θ cos θ cos φ[Ep(t)]y, (11a)

py = (α⊥ + �α sin2 θ cos2 φ)[Ep(t)]y
+�α sin θ cos θ cos φ[Ee(t) + Ep(t)]x, (11b)

where θ is the angle between the molecular axis and the
x direction, and φ is the azimuthal angle about the x axis,
measured with respect to the y direction. For brevity, we omit
the r argument in this section—note that all quantities with a
time dependence also depend on r. The polarization of the gas
is P(t) = Na〈p〉t , where Na is the number density of the gas
and 〈〉t denotes the time-dependent ensemble average. We find

Px = Na(α⊥ + �α〈cos2 θ〉t )[Ee(t) + Ep(t)]x

+ Na

2
�α〈sin 2θ cos φ〉t [Ep(t)]y,

Py = Na

[
α⊥ + �α

2

(
1 − 〈cos2 θ〉t

) − �α

2
〈cos2 θ cos 2φ〉t

+ �α

2
〈cos 2φ〉t

]
[Ep(t)]y

+ Na�α

2
〈sin 2θ cos φ〉t [Ee(t) + Ep(t)]x.

For the calculation we are only interested in the nonlinear
response, which excludes the static background refractive
index proportional to Na(α⊥ + �α/3). Removing this static
contribution, we find that the nonlinear rotational polarization
is

(Prot)x = Na�α

{(
〈cos2 θ〉t − 1

3

)
[Ee(t) + Ep(t)]x

+ 1

2
〈sin 2θ cos φ〉t [Ep(t)]y

}
, (12a)

(Prot)y = Na�α

{
−1

2

[(
〈cos2 θ〉t − 1

3

)
+ 〈cos2 θ cos 2φ〉t

− 〈cos 2φ〉t
]

[Ep(t)]y

+ 1

2
〈sin 2θ cos φ〉t [Ee(t) + Ep(t)]x

}
. (12b)

The Hamiltonian for the interaction of an optical field E
and the rotational modes of molecules is H = −(1/2)p · E.

Using Eqs. (11), we find, to lowest order in the probe field and
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keeping only terms that vary slowly compared with ωe and ωp,
H = Hxx

⊥ + Hxx
‖ + Hxy , where

Hxx
⊥ (t) = − 1

2α⊥(|Ae|2 + [A∗
eAxe

i�k·r−i�ωt + c.c.]),

(13a)

Hxx
‖ (t) = − 1

2�α cos2 θ (|Ae|2 + [A∗
eAxe

i�k·r−i�ωt + c.c.]),

(13b)

Hxy(t) = − 1
4�α sin 2θ cos φ[A∗

eAye
i�k·r−i�ωt + c.c.].

(13c)

To lowest order, the rotational contribution to the nonlinear
polarization is third order in the optical field, and we restrict
ourselves here to this case. We seek a perturbative solution for
the time evolution of the density matrix ρ using the basis of
rotational eigenstates |j,m〉, having quantum numbers j for
the total rotational angular momentum J and m for the com-
ponent of J along the x direction. The zeroth-order solution
ρ(0) describes the initial thermal equilibrium distribution of
rotational states. It is diagonal and depends only on the total
angular momentum j ,

ρ
(0)
(jm),(j ′m′) = Dje

− Ej

kB T∑
k Dk(2k + 1)e− Ek

kB T

δjj ′δmm′ , (14)

where Ej = hcBj (j + 1) is the energy of the j th rotational
level (B is a rotational constant, which is related to the
molecular moment of inertia), and Dj is a degeneracy factor
related to nuclear spin statistics [2,14]. For brevity we define
ρ

(0)
jm = ρ

(0)
(jm),(jm). The first-order solution is

ρ
(1)
(jm)(j ′m′)(t) = − i

h̄

∫ t

−∞
[H(t ′),ρ(0)](jm),(j ′m′)e

iωjj ′ (t ′−t)dt ′,

(15)

where [,] denotes the commutator and ωjj ′ = (Ej − Ej ′ )/h̄.
We neglect decay of the rotational coherences, as we are
interested here in the response during the pump pulse and
a few hundred femtoseconds afterward, whereas the rotational
coherence lasts >10 ps at atmospheric pressure and tempera-
ture [14].

Since ρ(0) and Hxx
⊥ are diagonal, [H,ρ(0)](jm),(j ′m′) =

(ρ(0)
jm − ρ

(0)
j ′m′ )[Hxx

‖ ](jm),(j ′m′)+(ρ(0)
jm−ρ

(0)
j ′m′)H

xy

(jm),(j ′m′), where

Hxx
‖,(jm),(j ′m′)(t) = − 1

2�α[|Ae|2 + (A∗
eAxe

i�k·r−i�ωt + c.c.)]

×〈jm| cos2 θ |j ′m′〉,
H

xy

(jm),(j ′m′)(t) = − 1
4�α(A∗

eAye
i�k·r−i�ωt + c.c.)

×〈jm| sin 2θ cos φ|j ′m′〉.
In Appendix B expressions for 〈jm| cos2 θ |j ′m′〉 and
〈jm| sin 2θ cos φ|j ′m′〉 are given. Finally, to find the
nonlinear polarization, we need to calculate

〈sin 2θ cos φ〉t = Tr[ρ(1)(t) sin 2θ cos φ]

=
∑

j,m,j ′,m′
ρ

(1)
(jm),(j ′m′)(t)〈j,m| sin 2θ cos φ|j ′,m′〉,

and the equivalent expression for 〈cos2 θ〉t [14]. One can
show that to lowest order 〈cos2 θ cos 2φ〉t = 〈cos 2φ〉t = 0.

In Appendix B, it is shown that, in analogy with our previous
discussion, the ensemble-averaged molecular alignment
quantities can be split into smooth and grating terms according
to 〈cos2 θ〉t = 〈cos2 θ〉st + 1/3 + (〈cos2 θ〉gt ei�k·r + c.c.) and
〈sin 2θ cos φ〉t = 〈sin 2θ cos φ〉gt ei�k·r + c.c., where

〈cos2 θ〉st =
∑

j

Kj

∫ t

−∞
sin[ωj+2,j (t ′ − t)]|Ae|2(t ′)dt ′, (16)

〈cos2 θ〉gt =
∑

j

Kj

∫ t

−∞
sin[ωj+2,j (t ′ − t)]

×A∗
e (t ′)Ax(t ′)e−i�ωt ′dt ′, (17)

〈sin 2θ cos φ〉gt = 3

2

∑
j

Kj

∫ t

−∞
sin[ωj+2,j (t ′ − t)]

×A∗
e (t ′)Ay(t ′)e−i�ωt ′dt ′, (18)

and

Kj = 2�α

15h̄

(j + 1)(j + 2)

2j + 3

(
ρ

(0)
j+2

2j + 5
− ρ

(0)
j

2j + 1

)
,

where ρ
(0)
j ≡ (2j + 1)ρ(0)

jm. As with the plasma response,
the integrals in the grating terms in Eqs. (17) and (18) are
suppressed when �ω is nonzero. However, resonant behavior
may occur when the pump and probe frequencies differ by
the spacing between rotational levels. In the experiments
considered where �ω �= 0, �ω is very large compared to the
spacing between thermally populated rotational levels.

Keeping only terms that lead to a polarization source
propagating in the eikp ·r direction, we find

(Prot)x = Na�α
[〈cos2 θ〉st Ax(t)eikp ·r−iωpt

+〈cos2 θ〉gt Ae(t)eikp ·r−iωet
]
,

(Prot)y = Na�α
[ − 1

2 〈cos2 θ〉st Ay(t)eikp ·r−iωpt

+ 1
2 〈sin 2θ cos φ〉gt Ae(t)eikp ·r−iωet

]
.

Taking the second derivative with respect to t , we find (in the
SVEA and keeping only terms without time derivatives)

∂2(Prot)x
∂t2

= −Na�αω2
p

[
〈cos2 θ〉st Ax(t)e−iωpt

+ ω2
e

ω2
p

〈cos2 θ〉gt Ae(t)e−iωet

]
, (19a)

∂2(Prot)y
∂t2

= 1

2
Na�αω2

p

[
〈cos2 θ〉st Ay(t)e−iωpt

− ω2
e

ω2
p

〈sin 2θ cos φ〉gt Ae(t)e−iωet

]
. (19b)

It will be shown later that the rotational grating produces
a probe phase shift that approximately follows the pump
envelope. In the first-order perturbation approximation used
here, the rotational grating contribution is proportional to the
pump intensity [41].

III. CALCULATIONS

We next perform numerical calculations and compare
them to previously reported experimental results. Defining a
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local time coordinate τ = t − zn0/c, so that ∂/∂z → ∂/∂z −
(n0/c)∂/∂τ and ∂/∂t → ∂/∂τ [8], and defining barred func-
tions using this local coordinate system Āp(r,τ ) = Ap(r,t),
Eq. (2) becomes

ikp

∂Āp

∂z
e−iωpτ = 4π

c2

∂2P̄NL,p

∂τ 2
. (20)

Note that, when these coordinates are used, the probe envelope
is independent of z in the absence of nonlinear interaction (i.e.,
when the right-hand side is zero). The outgoing probe field is
first calculated numerically using Eq. (20), with the nonlinear
polarization sources from Eqs. (4), (5), (10), and (19). The
signal measured in two types of experiments is then calculated
from the probe field.

For the ionization rate w(I ) we use the model of
Popruzhenko et al. [32], which has been shown to approxi-
mately agree with time domain Schrödinger equation calcula-
tions and has been used in recent Kramers-Kronig calculations
of the nonlinear response [18,42]. For the rotational response
in N2 and O2, we use B = 2.0 cm−1 for N2 and B = 1.44 cm−1

for O2 and assume T = 293 K. For n2 and �α we use the values
reported in [17]. We neglect the vibrational response, which in
N2 and O2 results in a small (less than 10% of the electronic
nonlinearity [43]) effectively instantaneous response for the
pulse durations used in the experiments.

A. Single-shot spectral interferometry: Degenerate versus
nondegenerate probe

We first simulate the signal in spectral interferometry
experiments, which directly measure the time- and space-
dependent probe phase shift. We calculate using the parameters
of recent experiments using a chirped probe pulse [17,18]. The
pump pulse is assumed to be transform limited and Gaussian,
centered at 800 nm with a full width at half maximum (FWHM)
time duration of 40 fs. The linearly polarized probe is either
centered at 800 nm (degenerate) or 600 nm (nondegenerate).
The chirped probe pulse is handled with a time-dependent
phase in the incident complex probe envelope Ainc

p (r,t). For
the nondegenerate case, the outgoing probe field calculated is
frequency filtered (as in the experiment) to remove components
near the pump frequency ωe before the nonlinear phase shift
�	(t) = Im{ln[Ap(t)/Ainc

p (t)]} is calculated.
The time-dependent nonlinear refractive index �n(t) =

�	(t)c/(n0ωpL), where L = 200 μm is the interaction
length, is shown in Fig. 1. Two different calculations are
shown: one for N2 at low pump intensity, which shows the
effect of the rotational response, and Ar at high pump intensity,
which shows the effect of the plasma response. The green
dotted line shows the intensity envelope of the pump pulse, and
the thick red (thin blue) curves show the response for the probe
polarization parallel (perpendicular) to the pump polarization.
Solid and dashed lines show the simulated signal with and
without the grating response, respectively. The dashed line
thus indicates the nonlinearity that a laser pulse would impart
on itself.

In N2 at intensities below the ionization threshold, the
bound electronic nonlinearity due to χ (3) causes a phase
shift that is proportional to the pump intensity envelope, and
the smooth rotational nonlinearity causes a delayed response

nondegenerate
probe

nondegenerate probe

degenerate probe

degenerate probe

Ar, 80 TW/cm2

N2, 10 TW/cm2

pump-probe delay (fs)

pump-probe delay (fs)

FIG. 1. (Color online) Simulated single-shot spectral interferom-
etry signal in N2 and Ar for a transform-limited, 40 fs pump pulse
centered at 800 nm. The pump intensity is shown as a green dotted
line. The calculated nonlinear index �n(t) = �	(t)c/(n0ωpL),
where 	(t) is the time-dependent probe phase shift, is shown
assuming a nondegenerate probe centered at 600 nm (upper curves)
and a degenerate probe centered at 800 nm (lower curves). The
change in index is plotted for the probe polarized parallel (thick
red) or perpendicular (thin blue) to the pump polarization. Curves for
a nondegenerate probe are offset vertically for clarity. The simulated
signal is shown including (solid) and excluding (dashed) grating
effects.

peaking about 80 fs after the peak of the pump pulse. When
a degenerate probe is used (lower curves), an effectively
instantaneous rotational grating signal appears that, if not
properly taken into account in the analysis, would make
it appear that n2 was larger than it is. Whether the probe
polarization is oriented parallel or perpendicular to the pump
polarization, the rotational grating contribution is positive, but
not the same magnitude—thus, it contributes to a transient
birefringence experiment, as will be shown later.

In Ar at high intensity, the bound electronic nonlinearity
is accompanied by the nonlinearity due to the generation of
free electrons (plasma). The “smooth” plasma contribution
accumulates during the pump pulse and afterward contributes
a long-lived, constant phase shift. The plasma grating, for a
degenerate probe polarized parallel to the pump polarization,
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FIG. 2. (Color online) Experimental diagram for transient bire-
fringence experiment, showing the initial polarization of the pump
and probe fields, the interaction region inside a gas cell, and the
detection scheme.

results in a strongly time-dependent negative signal that is a
few times larger than the “smooth” plasma signal.

In both cases, when a nondegenerate probe pulse is used
(upper curves), the only difference between the experimentally
measured �n and the true nonlinear index �n is the factor of 2
enhancement in the bound electronic contribution to the non-
linearity. These calculations provide theoretical justification
for the analysis performed in recent absolute measurements of
the nonlinearity in the noble gases, N2, O2, and N2O [17,18].
The extracted values for n2 and �α are in good agreement
with previous calculations [39,44,45], experiments using
less direct methods [43,46], and a ratiometric measurement
[47]. Our calculations reinforce the point that nondegenerate
supercontinuum spectral interferometry is the most direct,
powerful technique currently available for measuring the
optical nonlinearity.

B. Transient birefringence using a degenerate probe

Next we simulate the degenerate pump-probe transient
birefringence experiment by Loriot et al. [9,48]. A diagram of
the heterodyne transient birefringence experimental apparatus
is shown in Fig. 2. The probe is linearly polarized at 45◦ with
respect to the pump polarization, so Ainc

x = Ainc
y . After the

interaction region, the probe beam is passed through a phase
plate, which provides a static retardance 2ξ between the x and
y probe components, followed by a polarizer oriented at 90◦
with respect to the initial probe beam polarization. The optical
field after the polarizer is

As(ξ,t) = eiξAx(t) − e−iξAy(t)

= eiξ |Ax(t)|ei	x (t) − e−iξ |Ay(t)|ei	y (t). (21)

In the Loriot et al. experiment, a photomultiplier tube
is used to detect this field, and the signal is proportional
to

∫ |As(ξ,t)|2dt . The “pure heterodyne” signal is found by
subtracting the signals for orientations of the phase plate
producing static retardances 2ξ and −2ξ [9],

Sh ∝
∫ ∞

−∞
|As(ξ,t)|2dt −

∫ ∞

−∞
|As(−ξ,t)|2dt (22)

∝ sin(2ξ )
∫ ∞

−∞
|Ax(t)||Ay(t)| sin[	x(t) − 	y(t)]dt, (23)

where Ai(t) = |Ai(t)|ei	i (t). Since there is little pump-induced
change in the probe amplitude, |Ax | ≈ |Ay |, and Sh is thus
proportional to the pump-induced birefringence integrated
with the probe intensity. The heterodyne signal was measured

FIG. 3. (Color online) Simulated heterodyne transient birefrin-
gence signal Sh [Eq. (23)] for N2 and O2 as a function of pump-probe
delay, assuming transform-limited 90 fs pulses centered at 800 nm.
The peak pump intensity is 10 TW/cm2. The curves show the
calculated signal with and without the rotational grating contribution,
the contribution from the bound electronic Kerr effect alone, and the
contribution from the rotational grating alone.

as a function of the time delay between the pump and
probe pulses. We performed three-dimensional numerical
calculations of the Loriot experiment, assuming that the pump
and probe beams were Gaussian beams with FWHM waists of
33 μm crossing at θ = 4◦.

1. Rotational grating effects: simulations for N2

The calculated transient birefringence signal in N2 and
O2 at low pump intensity is shown in Fig. 3, with and
without the rotational grating contribution. The rotational
grating contribution alone is also shown, as is the electronic
Kerr contribution alone. Both are roughly proportional to the
convolved pump intensity envelope. The rotational grating
contribution in transient birefringence is positive, increasing
the apparent instantaneous nonlinearity observed in a degen-
erate pump-probe experiment.

Table I shows measured values of n2 from experiments by
Loriot et al. [9] and from a recent nondegenerate spectral
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TABLE I. Comparison of n2 measurements by Wahlstrand et al.
[17] and Loriot et al. [9,10]. For N2 and O2, values of n2 from the
Loriot et al. experiment are shown with and without correcting for
the effectively instantaneous contribution from the rotational grating,
which was calculated assuming 90 fs, transform-limited Gaussian
pulses.

n2 (10−20 cm2/W)

Gas Ref. [17] Ref. [10] Ref. [10] corrected for rot. grating
Ar 9.7 ± 1.2 10.0 ± 0.9
N2 7.4 ± 0.9 11.0 ± 2.0 8.4 ± 2.0
O2 9.5 ± 1.2 16.0 ± 3.5 11.1 ± 3.5

interferometry experiment by Wahlstrand et al. [17]. The
reported values for Ar agree within error, but the values in
N2 and O2 do not. This can be explained by the additional
phase shift imparted to the probe by the rotational grating in
the Loriot et al. experiment (shown in Fig. 3). We used the
calculation to subtract the rotational grating contribution from
the Loriot et al. measurements in N2 and O2; these corrected
n2 values are shown in the last column of Table I. After the
correction the measurements agree within their uncertainty
estimates.

2. Plasma grating effects: simulations for Ar

Plots of the calculated heterodyne transient birefringence
signal versus pump-probe delay in Ar are shown in Fig. 4.
The signal for 90 fs transform-limited pump and probe
pulses centered at 800 nm is shown as a function of pump
intensity in the top panel of Fig. 4. At low pump intensity
the induced birefringence is �n‖ − �n⊥ = 2n2 − 2n2/3 =
4n2/3, and the signal is proportional to the pump intensity
envelope convolved with the probe intensity envelope. At
high pump intensity, this positive signal due to the Kerr
birefringence is overwhelmed by the negative plasma grating
signal. The results are similar to those found previously from
a one-dimensional calculation using a multiphoton ionization
rate [11]. We find that the negative birefringence due to
the plasma grating appears at a similar intensity to that
reported by Loriot et al. [9,48]. Note that the normalized
intensity used by Loriot et al. is the peak intensity divided
by 1.7 [9,48].

The plasma grating contribution dominates the signal at
a lower peak intensity than one might expect from recent
measurements using spectral interferometry, where the plasma
phase shift first appears at approximately 80 TW/cm2 [18].
The combination of three effects explains this apparent
discrepancy. First, the nonlinear refractive index change for
a given plasma density is larger by a factor of ∼1.8 for an
800 nm probe compared to a 600 nm probe owing to the λ2

scaling of the free electron refractive index. Thus, while a given
plasma density produces a significantly larger phase shift at
800 nm compared to 600 nm, the Kerr effect is nearly the same
because of its comparatively lesser dispersion. Second, the
calculation assumes 90 fs pulses, about 2.5 times longer than
the pulses used in [16,18], resulting in a higher plasma density
for a given peak intensity. Finally, the nearly instantaneous
negative plasma grating signal is a few times larger than the

FIG. 4. (Color online) Simulated heterodyne transient birefrin-
gence signal Sh [Eq. (23)] for Ar as a function of pump-probe
delay, assuming pulses centered at 800 nm. In the upper panel, the
calculation assumes a Gaussian transform-limited 90 fs FWHM pulse,
and the signal is shown for a few pump peak intensities. In the lower
panel, the calculation assumes a pump peak intensity of 80 TW/cm2,
and the signal is shown for a few values of group delay dispersion.
Both pump and probe pulses are chirped, and the transform-limited
pulse width is 90 fs FWHM and Gaussian.

“smooth” plasma phase shift that exists after the pump pulse
(cf. Fig. 1).

The Loriot et al. data appears roughly symmetric with
respect to time reversal [9,48]. Because the plasma grating
signal is slightly delayed with respect to the Kerr signal due
to the cumulative nature of the plasma nonlinearity, the signal
for a transform limited pulse is asymmetric at intermediate
intensity. However, like two-beam coupling energy transfer,
the plasma grating phase shift is sensitive to the chirp of the
pump and probe pulses [25]. If the pulses are chirped, the
asymmetry of the pump-probe signal is lessened and can even
be reversed. This is illustrated in the bottom panel of Fig. 4,
where the calculated signal is shown as a function of group
delay dispersion (GDD), assuming that the transform-limited
pulse width is 90 fs. The pump and probe pulses are assumed
to have the same GDD.
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IV. EXPERIMENT

Based on a numerical calculation in atomic hydrogen, Béjot
et al. recently argued that the higher-order Kerr effect is present
only at optical frequencies near the frequency of an intense
driving field [49], and therefore nondegenerate pump-probe
experiments, which use a probe pulse detuned from the pump
pulse frequency, are incapable of observing it. In this section
we describe new experimental evidence that the negative,
nearly instantaneous signal observed using a degenerate probe
is caused by the plasma grating.

A. Spectrally resolved birefringence

The Loriot et al. experiment measured the temporally
convolved transient birefringence as a function of pump-probe
time delay [9]. Another approach involves spectrally resolving
the birefringence. Previously, an experiment using 400 nm
light in air was reported [12], which showed that the intensity
dependence of the negative signal was consistent with the
plasma grating theory assuming multiphoton ionization [11],
which is a good approximation at 400 nm, where 4 photons
are required for ionization of O2. Here, we report new data in
Ar and air using 800 nm pulses.

The experimental setup is similar to that shown in Fig. 2.
After the pump and probe interact, a fixed quarter wave plate
in the probe path produces a static birefringence 2ξ = π/4,
and then the probe beam passes through a polarizer. The
relative polarization of the pump beam with respect to the
probe is alternated between ±45◦ to make measurements with
2ξ effectively π/4 and −π/4. The spectrum of the beam after
the polarizer is measured as a function of pump-probe time
delay. Measurements using 2ξ = π/4 and 2ξ = −π/4 are
subtracted to generate the pure heterodyne spectrally resolved
pump-probe signal, with optical frequency on one axis and
pump-probe time delay on the other. The pump and probe were
42 fs FWHM, approximately transform-limited pulses. Experi-
mental results are shown in Fig. 5(a) for Ar and Fig. 5(d) for air.

To simulate the experimental data, we numerically calculate
the optical field at the output of the polarizer, given by Eq. (21),
and then Fourier transform it and calculate the magnitude
squared. The pure heterodyne spectrum is found by subtracting
the calculated Fourier transforms for 2ξ = π/4 and 2ξ =
−π/4. The signal is plotted as a function of optical frequency
and pump-probe time delay in Fig. 5(b) (Ar) and Fig. 5(e)
(air) for the plasma grating model and in Fig. 5(c) (Ar) and
Fig. 5(f) (air) neglecting ionization but including higher-order
Kerr coefficients [10]. The shape of the signal clearly matches

FIG. 5. (Color online) Spectrally resolved transient birefringence results. The heterodyne-detected signal is plotted as a function of
pump-probe time delay and wavelength. (a) Experimental data in Ar for pump pulse energy 42.5 μJ. (b) Calculation for Ar including plasma
grating assuming peak intensity 100 TW/cm2. (c) Calculation for Ar assuming no plasma grating but a higher-order Kerr effect [10] using peak
intensity 50 TW/cm2. (d) Experimental data in air for pump pulse energy 25 μJ. (e) Calculation for air including plasma grating assuming
peak intensity 100 TW/cm2. (f) Calculation for air assuming no plasma grating but a higher-order Kerr effect [10] using peak intensity
60 TW/cm2.
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the plasma grating model better than the higher-order Kerr
effect model. The difference between Figs. 5(b) and 5(c) can
be attributed mostly to the cumulative nature of the plasma
nonlinearity, which also results in the slight asymmetry with
respect to time in the spectrally integrated signal at high
intensity with a transform-limited pulse observed in Fig. 4.

B. Degenerate, chirped pulse spectral interferometry

To further investigate the origin of the negative birefrin-
gence, we use spectral interferometry with a nearly degenerate
probe pulse. The principle of the degenerate experiment is
identical to our previous nondegenerate implementation using
a supercontinuum probe [13]. The challenge in performing the
experiment with a degenerate probe is rejecting pump light
from the detection spectrometer. We previously reported data
using a degenerate probe with a polarization perpendicular to
the pump, where polarizers were used to block the pump light
before detection [50]. Here, we use a noncollinear geometry
and reject pump light using an aperture, allowing orientation
of the pump polarization parallel to the probe. A sketch of the
experimental apparatus is shown in Fig. 6(a). The pump is a
40 fs FWHM pulse centered at 800 nm. The pump and probe
(or reference) beams cross at 3◦, allowing the pump beam to
be blocked before probe detection. The two beams are crossed
inside a vacuum chamber backfilled with 0.5 atm of Ar. The

FIG. 6. (Color online) Degenerate spectral interferometry results.
(a) Experimental setup. (b) Extracted time domain phase shift as a
function of the pump pulse energy for parallel polarizations (solid)
and perpendicular (dashed).

probe and reference pulses are chirped using a block of glass
to a group delay dispersion of 1650 fs2.

Results of the experiment are shown in Fig. 6(b). For the
pump beam polarized perpendicular to the probe beam, the
result is identical to that found with a collinear geometry [50].
We observe a positive instantaneous phase shift near the time
of peak pump intensity (t = 0) due to the optical Kerr effect,
and a negative, long-lasting signal from electrons freed by
ionization. When the pump beam is polarized parallel to the
probe beam, we in addition observe a negative signal near
t = 0 that is much larger than the positive Kerr signal at high
intensity. We attribute the oscillations in the data to interference
between supercontinuum generated by the pump pulse and the
probe pulse. It is important to note that as the intensity is
increased, the negative signal at t = 0 appears simultaneously
with the smooth plasma signal. This is strong evidence for
the plasma grating interpretation. In addition, the shape of the
signal is consistent with our calculation, shown in Fig. 1.

V. CONCLUSION

We have presented a detailed theory and numerical cal-
culations of pump-induced phase shifts of probe pulses in
media with electronic, plasma, and rotational nonlinearities.
Such experiments are typically used to measure the nonlinear
response of a material. The theory includes the effect of
the nonlinear interference grating formed by the space and
time overlap of the pump and probe fields. We showed that
proper interpretation of the probe response, in terms of a
medium’s fundamental nonlinearities, can only be achieved
by correctly accounting for the effect of the interference
grating. In particular, our calculations reveal how the presence
of nonlinear interference gratings (in both the plasma and
rotational responses) in recent pump-probe experiments have
resulted in misinterpretation of the obtained results for the
nonlinear response of gases at high intensity [9].

In addition, we have presented results from two degen-
erate pump-probe experiments, spectrally resolved transient
birefringence and noncollinear spectral interferometry, for the
specific purpose of investigating the effect on a probe pulse
of the nonlinear interference grating. The results of both
experiments are well reproduced by our calculations. The
results of this paper reinforce the idea that, for the purpose
of measuring the nonlinear response of a medium using cross
phase modulation, a nondegenerate pump-probe experiment
is preferable to a degenerate one. As shown earlier, for a
nondegenerate experiment the only difference in the measured
nonlinear refractive index and the nonlinear refractive index
induced by a pulse and itself is a factor of 2 enhancement in
the instantaneous, bound electronic nonlinearity.
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APPENDIX A: ELECTRONIC KERR EFFECT

We put the total optical field E = Ep + Ee into Eq. (3), recalling that the pump is polarized along x̂ and the probe is polarized
in the xy plane. Keeping only terms containing eikp ·r−iωpt and using our assumption |Ae| � |Ap| to neglect terms second-order
and higher in the probe field Ap, we find

(Pel)x(r,t) = 2π

n0c

[
3χ (3)

xxxxAx(r,t) + (
χ (3)

xyxx + χ (3)
xxyx + χ (3)

xxxy

)
Ay(r,t)

]
Ie(r,t)eikp ·r−iωpt ,

(Pel)y(r,t) = 2π

n0c

[
3χ (3)

yxxxAx(r,t) + (
χ (3)

yyxx + χ (3)
yxyx + χ (3)

yxxy

)
Ay(r,t)

]
Ie(r,t)eikp ·r−iωpt ,

where we have rewritten the expressions in terms of the pump intensity. In an isotropic medium, χ (3)
xyxx = χ (3)

xxyx = χ (3)
xxxy =

χ (3)
yxxx = 0, so we neglect all terms containing those elements. Taking the second derivative with respect to time, we find

4π

c2

∂2(Pel)x
∂t2

= 2n0n2

c2

∂2

∂t2
(IeAxe

ikp ·r−iωpt ),

where n2 is defined in the text. Expanding the derivative, we find

4π

c2

∂2(Pel)x
∂t2

= 2n0n2

c2

(
∂2Ie

∂t2
Ax + 2

∂Ie

∂t

∂Ax

∂t
− ω2

pIeAx − 2iωp

∂Ie

∂t
Ax − 2iωpIe

∂Ax

∂t
+ ∂2Ax

∂t2

)
eikp ·r−iωpt .

For many-cycle pulses, only a few terms are important above. In the SVEA, second-order and higher time derivatives are
neglected. This leads to Eq. (4). In an isotropic medium far away from any resonances, χ (3)

yyxx = χ (3)
yxyx = χ (3)

yxxy = χ (3)
xxxx/3, from

which one can similarly derive Eq. (5).

APPENDIX B: ROTATIONAL GRATING

The quantity 〈j,m| sin 2θ cos φ|j ′,m′〉 can be expressed in terms of spherical harmonics,

〈j,m| sin 2θ cos φ|j ′,m′〉 = 〈j,m| sin θ cos θ (eiφ + e−iφ)|j ′,m′〉 =
√

8π

15

[〈j,m∣∣Y 1
2 (θ,φ)

∣∣j ′,m′〉 − 〈j,m∣∣Y−1
2 (θ,φ)

∣∣j ′,m′〉] .

These integrals of 3 spherical harmonics lead to [51]

〈j,m| sin 2θ cos φ|j ′,m′〉 = {
[Am

+(j ′)δm,m′−1 − A−m
+ (j ′)δm,m′+1]δj,j ′+2 + [

Am
0 (j ′)δm,m′−1 − A−m

0 (j ′)δm,m′+1
]
δj,j ′

+ [Am
−(j ′)δm,m′−1 − A−m

− (j ′)δm,m′+1]δj,j ′−2
}
, (B1)

where

Am
+(j ) =

[
(j − m)(j − m + 1)[(j + 2)2 − m2]

(2j + 1)(2j + 3)2(2j + 5)

]1/2

, (B2a)

Am
0 (j ) = − (1 + 2m)[(j − m)(j + 1 + m)]1/2

(2j − 1)(2j + 3)
, (B2b)

Am
−(j ) = −

[
(j + m + 1)(j + m)[(j − 1)2 − m2]

(2j − 3)(2j − 1)2(2j + 1)

]1/2

. (B2c)

Similarly,

〈j,m| cos2 θ |j ′,m′〉 = Bm
+ (j ′)δj,j ′+2δmm′ + Bm

− (j ′)δj,j ′−2δmm′ + [
1
3 + Bm

0 (j ′)
]
δjj ′δmm′ , (B3)

where

Bm
+ (j ) =

[
[(j + 2)2 − m2][(j + 1)2 − m2]

(2j + 1)(2j + 3)2(2j + 5)

]1/2

, (B4a)

Bm
0 (j ) = 2

3

j (j + 1) − 3m2

(2j − 1)(2j + 3)
, (B4b)

Bm
− (j ) =

[
[(j 2 − m2)[(j − 1)2 − m2]

(2j − 1)(2j + 1)2(2j − 3)

]1/2

. (B4c)
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Using Eqs. (B1) and (B3) in Eqs. (13b) and (13c) and those plus Eq. (14) in Eq. (15), we find that only certain
elements of ρ(1) are nonzero. These are

ρ
(1)
(j,m),(j−2,m)(r,t) = −B−(j − 2)

(
ρ

(0)
j − ρ

(0)
j−2

)
Fj,j−2(r,t), (B5a)

ρ
(1)
(j,m),(j+2,m)(r,t) = −B+(j + 2)

(
ρ

(0)
j − ρ

(0)
j+2

)
Fj,j+2(r,t), (B5b)

ρ
(1)
(j,m),(j−2,m+1)(r,t) = −Am

+(j − 2)
(
ρ

(0)
j − ρ

(0)
j−2

)
Gj,j−2(r,t), (B5c)

ρ
(1)
(j,m),(j−2,m−1)(r,t) = A−m

+ (j − 2)
(
ρ

(0)
j − ρ

(0)
j−2

)
Gj,j−2(r,t), (B5d)

ρ
(1)
(j,m),(j+2,m+1)(r,t) = −Am

−(j + 2)
(
ρ

(0)
j − ρ

(0)
j+2

)
Gj,j+2(r,t), (B5e)

ρ
(1)
(j,m),(j+2,m−1)(r,t) = A−m

− (j + 2)
(
ρ

(0)
j − ρ

(0)
j+2

)
Gj,j+2(r,t), (B5f)

where

Fjj ′(r,t) = i�α

2h̄

∫ t

−∞
eiωj,j ′ (t ′−t){|Ae|2(r,t ′) + [A∗

e (r,t ′)Ax(r,t ′)ei�k·r−i�ωt ′ + c.c.]}dt ′.

Gjj ′ (r,t) = i�α

4h̄

∫ t

−∞
eiωj,j ′ (t ′−t)[A∗

e (r,t ′)Ay(r,t ′)ei�k·r−i�ωt ′ + c.c.]dt ′.

Finally,

〈sin 2θ cos φ〉t = Tr(ρ sin 2θ cos φ) =
∑

ρ
(1)
(j,m),(j ′,m′)(r,t)〈j,m| sin 2θ cos φ|j ′,m′〉

=
∑ [ − A−m−1

− (j )ρ(1)
(j,m),(j−2,m+1)(r,t) + Am−1

− (j )ρ(1)
(j,m),(j−2,m−1)(r,t)

−A−m−1
+ (j )ρ(1)

(j,m),(j+2,m+1)(r,t) + Am−1
+ (j )ρ(1)

(j,m),(j+2,m−1)(r,t)
]

=
∑ [ − A−m−1

− (j )ρ(1)
(j,m),(j−2,m+1)(r,t) + Am−1

− (j )ρ(1)
(j,m),(j−2,m−1)(r,t)

−A−m
+ (j )ρ(1)

(j,m−1),(j+2,m)(r,t) + Am
+(j )ρ(1)

(j,m+1),(j+2,m)(r,t)
]
.

Inserting Eqs. (B5), we find

〈sin 2θ cos φ〉t =
∑
l,m

[
A−m−1

− (j )Am
+(j − 2)

(
ρ

(0)
j − ρ

(0)
j−2

)
Gj,j−2(r,t) + Am−1

− (j )A−m
+ (j − 2)

(
ρ

(0)
j − ρ

(0)
j−2

)
Gj,j−2(r,t)

−A−m
+ (j − 2)Am

−(j + 2)
(
ρ

(0)
j − ρ

(0)
j+2

)
Gj+2,j (r,t) − Am

+(j − 2)A−m
− (j + 2)

(
ρ

(0)
j − ρ

(0)
j+2

)
Gj+2,j (r,t)

]
= −

∑
j,m

[
A−m−1

− (j )Am
+(j − 2) + Am−1

− (j )A−m
+ (j − 2)

](
ρ

(0)
j − ρ

(0)
j−2

)
Hj,j−2(r,t), (B6)

where in the last line we have used

Gjj ′ (r,t) − Gj ′j (r,t) = Hjj ′(r,t) ≡ �α

2h̄

∫ t

−∞
sin[ωj,j ′ (t ′ − t)][A∗

e (r,t)Ay(r,t)ei�k·r−i�ωt ′ + c.c.]dt ′.

Using Eqs. (B2) in Eq. (B6) and canceling many factors leads to Eq. (18). A similar calculation, which we do not reproduce here
because it has been described previously [14], leads to Eqs. (16) and (17).
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