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A laser pulse propagating in a corrugated plasma channel is composed of spatial harmonics whose

phase velocities can be subluminal. The phase velocity of a spatial harmonic can be matched to the speed

of a relativistic electron resulting in direct acceleration by the guided laser field in a plasma waveguide and

linear energy gain over the interaction length. Here we examine the fully self-consistent interaction of the

laser pulse and electron beam using particle-in-cell (PIC) simulations. For low electron beam densities, we

find that the ponderomotive force of the laser pulse pushes plasma channel electrons towards the

propagation axis, which deflects the beam electrons. When the beam density is high, the space charge

force of the beam drives the channel electrons off axis, providing collimation of the beam. In addition, we

consider a ramped density profile for lowering the threshold energy for trapping in a subluminal spatial

harmonic. By using a density ramp, the trapping energy for a normalized vector potential of a0 ¼ 0:1 is

reduced from a relativistic factor �0 ¼ 170 to �0 ¼ 20.
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I. INTRODUCTION

In this paper, we explore, through theory and simula-
tions, the quasi-phase-matched direct acceleration (QPMA)
of electrons in an axially modulated plasma waveguide.
Quasi-phase-matching refers to matching the electron ve-
locity to the phase velocity of an individual spatial harmonic
comprising an electromagnetic wave propagating in an
axially modulated structure. In analogy with quasi-phase-
matching in nonlinear optics, we use a periodic medium to
compensate the difference between the electron velocity and
the phase velocity of the accelerating field to transfer energy
from the accelerating field to the electron. In nonlinear
optics, perfect phase-matching requires the phase velocity
of the nonlinear source term (the nonlinear polarization) to
be equal to that of the generated light, such as the second
harmonic; equivalently, the wave vectors of these two waves
are equal. In the absence of phase-matching, a modulation in
the nonlinearity or in the refractive index can be introduced
along the propagation axis (axial modulation) such that the
wave vector mismatch (phase velocity mismatch) between
the two waves is provided by the effective wave vector of
the structure. This allows net energy transfer from the
nonlinear polarization wave to the desired product electro-
magnetic wave [1]. For direct laser acceleration of elec-
trons, perfect phase-matching would require matching the
electron velocity to the phase velocity of the accelerating
electromagnetic wave. However, because an electron can-
not gain energy from an electromagnetic wave in an axially

uniform propagation medium or structure, one must intro-
duce an axially periodic structure that compensates the
velocity mismatch. The principle of matching the period
of the structure to the dephasing length is required in
both the nonlinear optics case and the electromagnetic
wave + electron beam case.
In the scheme described here, an electron beam copro-

pagating with a radially polarized laser pulse injected into
a corrugated plasma waveguide is accelerated by a phase-
matched axial spatial harmonic of the resulting guided
electromagnetic field, providing linear energy gain over
the interaction length [2]. In order to achieve linear energy
gain over an extended interaction length, three things are
required: slow electromagnetic waves (providing quasi-
phase-matching), a channel for guiding the laser pulse
(eliminating diffractive spreading of the laser pulse)
[3,4], and radial polarization (providing a component of
electric field along the propagation axis) [2].
In uniform plasma, the phase velocity of a light wave is

greater than the speed of light in vacuum making linear,
direct acceleration of charged particles with laser pulses
impossible. This is an extension of the Lawson-Woodward
theorem [5], which states that the energy gain of an elec-
tron accelerated by the linear field of a laser pulse in
vacuum over an infinite distance is zero. Linear accelera-
tion can however be achieved through quasi-phase-
matching of electromagnetic waves to charged particles.
Quasi-phase-matching requires a structure whose disper-
sion allows for ‘‘slow waves’’ or components of the elec-
tromagnetic wave with subluminal phase velocities. Layer
et al. succeeded in imparting axial density modulations
on a miniature plasma channel creating an ideal structure
for quasi-phase-matching [6,7]. The longitudinal periodic-
ity of the structure provides dispersion where a single
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frequency is associated with a spectrum of axial wave
numbers, some associated with subluminal phase veloc-
ities. In addition to providing slow wave dispersion, the
corrugated plasma channel provides a guiding structure for
laser pulses. As a plasma, it eliminates the damage limita-
tion typical of metallic guides or solid-state dielectric
guiding structures. Even with slow wave dispersion, a
linearly polarized laser pulse cannot accelerate electrons
along the axis of the channel without an appropriate field
component in the acceleration direction. The axial field
associated with a linearly polarized laser pulse is zero on
axis. A radially polarized laser pulse, on the other hand, has
a longitudinal component whose transverse dependence has
a maximum on axis. This longitudinal component is ob-
tained by Gauss’ law, giving ð1=rÞ@ðrErÞ=@r ¼ �@Ez=@z
for cylindrical symmetry.

To illustrate the principle of QPMA and find a scaling
for energy gain, we consider a simple model presented by
Palastro et al. [8,9]. The radial component of the laser
pulse vector potential in the plasma channel can be ex-
pressed in envelope form as follows:

A? ¼ Ârðr; z; tÞ exp½iðk0z�!0tÞ� þ c:c:; (1)

where k0 and !0 ¼ ck0 are the central wave number and

frequency of the laser pulse, respectively, and Âr is the
envelope function. Azimuthal symmetry of the laser pulse
is assumed. We consider channel electron densities with
!p � !0, where !2

p ¼ 4�e2neðr; zÞ=me is the plasma

frequency squared, and me and e are the electron mass
and the electron charge. In this limit, the temporal and

spatial variation of Âr during propagation are slow com-
pared to !0 and k0, respectively, and the slowly varying
envelope equation can be used to describe the evolution of
the laser pulse:
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Equation (2) includes only the linear plasma response to
the vector potential, thus our model is limited to the
consideration of nonrelativistic vector potentials a0 ¼
eA0=mec

2 < 1, where A0 is the amplitude of A?. We
consider the following density profile mimicking the
experimental results of Layer et al. [6,7]:

neðr; zÞ ¼ n0½1þ � sinðkmzÞ� þ 1
2n

00
0r

2; (3)

where � is modulation amplitude and n000 determines the

curvature of the channel.
The lowest order transverse mode solution of Eq. (2) is

Ârðr; z; tÞ ¼ A0

r

wch

e�r2=w2
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�ðz�vgtÞ2=�2
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inJnðc Þe�icþið�kþnkmÞz; (4)

where �z is the axial extent of the laser pulse, w2
ch ¼

2cð2=!002
p0Þ1=2, where !002

p0 ¼ ðe2=meÞn000 , Jnðc Þ is the nth

Bessel function of the first kind, c ¼ �!2
p0=2c

2k0km, and

�k ¼ �k�1
0 ð!2

p0=2c
2 þ 4=w2

chÞ. The pulse envelope is a

sum of spatial harmonics with Jnðc Þ determining the
relative amplitude. For typical experimental parameters,
c � 1 and Jnðc Þ � c n=2nn!: the relative amplitude
drops rapidly with increasing harmonic number n. For
maximum acceleration we want to consider the n ¼ 1
spatial harmonic. With Eq. (4) we can extract the longitu-
dinal accelerating field of the first spatial harmonic, using
r �A ’ 0 for ð!p=!0Þ2 � 1 for which we find

A z;1ðr; z; tÞ ¼ i
2J1ðc Þ
k0wch

A0e
�r2=w2

ch
�ðz�vgtÞ2=�2

z�icþið�kþkmÞz:

(5)

The corresponding phase velocity for the n ¼ 1 spatial
harmonic is then
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c
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ðk0wchÞ2
; (6)

where we have assumed jk0j � jkmj; j�kj. By an appro-
priate choice of km, we can tune the phase velocity for
QPMA. In particular, simple analysis shows that the ideal
phase velocity for a relativistic electron beam is vp;1 ¼ c,

or km ¼ ��k [10].
With the analytic expression for the vector potential in a

corrugated waveguide, a scaling law for energy gain of an
electron can be derived. A test electron with initial con-
ditions ðr; vr; z; vzÞ ¼ ð0; 0; z0; vz;0Þ is considered for the

scaling law. The initial velocity of the electron, vz;0, is
taken close to c so that phase-matching between the
electron and the spatial harmonic is ensured over the
interaction distance. Using �� ¼ �q=mec

3
R
v � @tAdt,

we obtain the energy gain for a test particle in a constant
laser field:
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where zmin is the minimum interaction length. In particular,
the interaction length can be limited by the length of the
channel, the time it takes for the electrons to travel through
the laser pulse, or defocusing effects in the beam. The
energy gain increases linearly with modulation amplitude,
�, and laser amplitude, a0, and is inversely proportional to
wch, a result of larger axial fields in narrower channels.
Recently, there has been much research activity in the

area of laser plasma based acceleration of electrons. One of
the most widely studied schemes is laser wakefield accel-
eration (LWFA) of electrons [11–19]. In LWFA, the non-
linear ponderomotive force of a high intensity laser pulse
drives a strong longitudinal electrostatic wave, exceeding
10 GV=m in the plasma [16]. GeV-scale acceleration with
a quasimonoenergetic peak and low emittance has been
already achieved with LWFA over several centimeters
[16]. In addition, many studies have shown stable control

YOON et al. Phys. Rev. ST Accel. Beams 15, 081305 (2012)

081305-2



of output energy and charge in the accelerated bunches
[17–19]. Despite a number of advantages with LWFA, it
depends on a nonlinear laser plasma interaction, necessi-
tating multi-TW laser systems. Several direct laser accel-
eration schemes, such as the inverse Cherenkov accelerator
[20], the semi-infinite vacuum accelerator [21], and
vacuum beat wave accelerator [22–24], are proposed as
alternatives for small-scale laser systems. However, these
schemes suffer a low acceleration gradient (< 40 MV=m)
and short interaction distance (vacuum diffraction length).
To our knowledge, QPMA provides the highest accelera-
tion gradients at nonrelativistic laser intensity. For our
typical laboratory parameters [6,7], a QPMA acceleration
gradient of 10:6 MV=cm can be achieved with a 30 GW
laser pulse. QPMA is especially attractive for modest
energy, high repetition rate laser systems. Moreover, the
energy gain in QPMA grows linearly with the length of
plasma waveguide as long as the electrons do not outrun
the laser pulse.

The goal of this paper is to study QPMA using fully self-
consistent particle-in-cell (PIC) simulations. The simula-
tions are used to validate the simple model described
above, examine the self-consistent electrostatic fields gen-
erated by the beam itself, and to conduct preliminary
studies on density ramping for lowering the required in-
jection energies in QPMA. The paper is organized as
follows. In Sec. II, we describe the 2D cylindrical PIC
simulation, TURBOWAVE, and validate the code for QPMA
simulations. In Sec. III, we present simulation results of
electron acceleration in corrugated waveguides and com-
parisons to analytic predictions. Section IV includes an
analytic model and simulations of reduced energy thresh-
old electron acceleration using a plasma density ramp.
Section V is the conclusions.

II. CODE DETAIL AND VERIFICATION

In order to account for nonlinear effects, and to more
fully describe the dynamics of the accelerated electrons,
2D axisymmetric particle-in-cell (PIC) simulations are
used. In this work we used the code TURBOWAVE [25].
TURBOWAVE is a framework for solving the Maxwell-

Lorentz system of equations for charged particle dynamics.
The model is fully relativistic and fully electromagnetic.
The fields are advanced using a straightforward extension
of the usual Yee solver [26] to the case of cylindrical
coordinates. The sources are deposited using linear weight-
ing, with charge conservation ensured by means of a
Poisson solver [27]. Since dynamics on the time scale of
the laser period are important, the full relativistic equations
of motion are solved.

The simulations are done in a moving frame, which
moves at c. In the moving frame the coordinates are � ¼
z� ct and t, where � represents distance in the moving
frame. The extent of the simulation window is 80 �m in
the transverse direction and 100 �m in �. The number of

grid points used in the transverse direction and the �
direction are 512 and 4096, respectively. The radially
polarized laser pulse is initialized as a lowest order asso-
ciated Laguerre Gaussian mode with a wavelength of
800 nm, longitudinal width of 100 fs in e�1, and transverse
radius of 15 �m in e�1. The field amplitude is varied. The
pulse begins outside the channel and unless otherwise
stated the plasma density is ramped up linearly over
20 �m. After the initial ramp, the electron density is given
by the equation

neðr;zÞ¼
8<
:
n0½1þ�sinðkmzÞ�

�
1þ 1

2n
00
0r

2

�
r<rc

0 r� rc;

(8)

where rc ¼ 70 �m. The channel has a parabolic density
profile in the transverse direction to which the laser pulse
is matched and a sinusoidal density oscillation in the
longitudinal direction. The channel terminates at some
radius allowing for side loss of electromagnetic energy.
Four particles are loaded at each cell to represent
electrons consisting a plasma waveguide. The parameters
for the density profile are an average density n0 ¼
7� 1018 cm�3, a modulation amplitude of � ¼ 0:9, and
a modulation period of 356 �m. This choice of parameters
sets the phase velocity of the 1st spatial harmonic to c
based on the simple theory and are experimentally realiz-
able [10]. Later we will show that electron energy gain is
sensitive to the choice of modulation period. The ions
evolve on a time scale much longer than the pulse duration
and are set to be immobile in the simulation.
We examine the validity of the simple theory and 2D

cylindrical PIC code by confirming the presence of spatial
harmonics of a laser pulse guided in a corrugated plasma
channel. This is done using two methods. The first is a
Fourier decomposition of the electromagnetic field. For the
Fourier decomposition we consider a small vector potential
a0 ¼ 0:01 to ensure linear propagation and a deliberately
small density modulation period of 2�=km ¼ 20 �m.
While this is not the optimal period for direct acceleration
it is more computationally efficient for examining the
spectral structure of the electromagnetic field. In particular,
the wave number resolution in a discrete Fourier transform
is given by 2�=L, where L is the length of the moving
frame box. If we wish to resolve spectral features due to the
modulations, the Nyquist condition must be satisfied:
kmL � 2�. In addition, we are required to resolve the
central laser wave number: k0�� � 2�. Combining these
two conditions we see that N� � k0=km, where N� is

the number of numerical grid points in �: the larger the
modulation period, the more computationally intensive the
calculation.
For examining the spectral properties, we Fourier trans-

form the on-axis longitudinal electric field, Ez, from the
simulation in both time and space. Figure 1(a) shows the
magnitude of the Fourier transform on a log scale as a
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function of ! and k. The fundamental spatial harmonic is
the brightest diagonal line in Fig. 1(a) surrounded by the
n ¼ 	1 spatial harmonics. The higher order spatial har-
monics, jnj> 1, are dim in this figure. As expected the
amplitude of these modes drops rapidly as n increases.
To compare to the simulation, we consider the theoretical
ratio of the fundamental and first spatial harmonics
J1ðc Þ=J0ðc Þ, and the simulated ratio. We consider two
different density modulation amplitudes: � ¼ 0:9 and
� ¼ 0:2. Table I shows excellent agreement between the
simulation results and the analytical calculation. It also

tells us that the modulation of plasma density in a plasma
waveguide excites spatial harmonics, and the ratio is line-
arly proportional to the modulation amplitude.
The second method for confirming the presence of spa-

tial harmonics is extraction of the electromagnetic field’s
phase. The phase contains information about the linear
response of the media and more specifically the spatial
profile of the background electron density. The connection
between the first and second approach is manifest in the
relationship:

P
ni

nJnðc Þ exp½inkmz� ¼ exp½ic cosðkmzÞ�.
Periodic phase oscillations lead to the presence of spatial
harmonics. From Eq. (4) we can write the total phase
of the laser pulse as �Tð�; tÞ ¼ ðk0 þ �kÞ�þ c�kt�
c cos½kmð�þ ctÞ�. For extracting the phase from the simu-
lation we consider a small vector potential a0 ¼ 0:1 to
ensure linear propagation and a standard modulation
period of 356 �m. A benefit of phase extraction is that
there are no additional numerical requirements as with the
Fourier decomposition. Again we consider the on-axis
axial field. The phase is defined by

� ¼ arctan

�
Imheik0�Ezit
Reheik0�Ezit

�
; (9)

where the brackets represent an average over one period of
the laser pulse and � ’ �T � k0�. The averaging removes
the variation at the carrier wave number leaving only the
slowly evolving component. This method is only valid
when the variation at k0 is much faster than any other
variation in the laser pulse: k0 � j�kj; km. Figure 1(b)
shows the phase oscillation due to the channel density
modulation. As expected, the oscillation period in time
corresponds to the modulation period.

III. 2D PIC SIMULATION RESULTS

In this section, we present results of fully self-consistent
2D cylindrical PIC simulations of QPMA. For QPMA the
copropagating electron beam is initialized as a Gaussian in
both the transverse and longitudinal directions with a
transverse and longitudinal e�1 length of 3 and 5 �m,
respectively. Eight particles per cell are used to represent
the copropagating electron beam. The beam electrons start
with identical longitudinal momentum and no transverse
momentum. The beam density is varied. Because of the
subluminal group velocity of the laser pulse, the laser pulse
will move backwards with respect to the electron beam. To
maximize the electron acceleration during 1 cm of propa-
gation, the beam is initially located 10 �m behind the peak
of the laser pulse.
We first consider the longitudinal field experienced by

an on-axis, highly relativistic test electrons in a laser pulse
with a0 ¼ 0:1 over 9 mm. Figure 2(a) shows the on-axis
longitudinal electric field for a fixed value of � in blue. In a
plasma channel without modulations, the oscillation would
be sinusoidal with a period of Ld ¼ 2�=j�kj, which we
refer to as the dephasing length. The dephasing length is

TABLE I. Comparison between the ratios of the fundamental
and first spatial harmonics from theory and simulation.

Modulation

amplitude

Amplitude

ratio (theory)

Amplitude ratio

(simulation)

� ¼ 0:2 0.0055 0.0051

� ¼ 0:9 0.025 0.023

FIG. 1. (a) Fourier transform of the longitudinal electric field
(Ez) in time (t) and space (z) at a laser wavelength �L ¼
800 nm, normalized vector potential a0 ¼ 0:01, modulation
period d ¼ 20 �m, and modulation amplitude � ¼ 0:9. The
diagonal lines represent the spatial harmonics. The fundamental
spatial harmonic is the central diagonal line. The diagonals to the
left and right of the fundamental are 	1st spatial harmonics,
respectively. (b) Phase of the on-axis longitudinal electric field at
a fixed � point. The period of the phase oscillation corresponds
to the density modulation period.
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the distance over which an electron moving at velocity c
would see the laser pulse slip by one wavelength in an
unmodulated channel. The oscillation here shows the phase
evolution of all of the spatial harmonics except n ¼ 1
whose phase velocity is identically c. In general, each
spatial harmonic will undergo a 2� phase oscillation in a
distance LdðnÞ ¼ 2�k�1

m ðn� 1Þ�1 for n � 1, where we
have used km ¼ ��k. The predominant mode in Fig. 2(a)
is the fundamental spatial harmonic, but the presence of
the other spatial harmonics is noticeable in the nonsinu-
soidal shape of the oscillation. The red curve in Fig. 2(a)
shows the energy gain calculated from Wð�; tÞ ¼
�ce

R
t
0 Ezð�; tÞdt. By setting the modulation period equal

to the dephasing length, we have ensured that the n ¼ 1
spatial harmonic is stationary in the frame of an electron
moving with a velocity near c. The relative phase of the
electron and spatial harmonic does not change and the
electron undergoes linear energy gain. The oscillations in
energy are due to the electron quiver motion from the other
spatial harmonics.

In Fig. 2(b) the modulation period is chosen to be
smaller such that km � ��k and the n ¼ 1 spatial har-
monic no longer has a phase velocity identical to c. In
particular, the modulation period is set to 350 �m, 6 �m
less than Ld. The waveform changes noticeably over 1 cm
propagation. Each spatial harmonic now undergoes a 2�
phase oscillation in a distance LdðnÞ ¼ 2�jnkm þ �kj�1,
which cannot be related by integer multiples for each n.
This results in the spatial harmonics dephasing from one
another and causing the waveform to change shape. Again,
the red line shows the energy gain, and as expected the
electron initially gains energy then loses energy as none of
the spatial harmonics are stationary in the electron frame.
This demonstrates that QPMA is sensitive to the matching
between modulation period and the dephasing length. We
note that the length of the plasma waveguide can be
reduced to account for this sensitivity. For example, if
the modulation period is 350 �m and the plasma wave-
guide is 0.45 cm (12 ps) electrons will gain energy over the

entire interaction length. Figure 2(c) shows self-consistent
energy gains over 9 mm for an initial energy �0 ¼ 200 and
laser pulse amplitude a0 ¼ 0:1 for different modulation
periods d ¼ 350 �m, 353 �m, and 356 �m in black, red,
and blue, respectively. The energy gain for d ¼ 356 �m
and d ¼ 353 �m is almost identical. Even with d ¼
350 �m the electron gains more energy than is predicted
in Fig. 2(b). The discrepancy between Fig. 2(b) and
Fig. 2(c) can be explained as follows. In Fig. 2(b) the electron
is assumed to move at the speed of light while the phase
velocity of the n ¼ 1 spatial harmonic is slightly subluminal
resulting in the dephasing described above. In Fig. 2(c),
however, the electron ismoving slightly below c and remains
phased with the spatial harmonic over a longer distance.
Figures 3(a) and 3(b) show simulated energy gains over

9 mm for different initial electron energies at pulse ampli-
tudes of a0 ¼ 0:1 and a0 ¼ 0:25, respectively. The energy
gains displayed are those of electrons having the largest
energy gain of all the electrons. The energy spectra will be
examined below. The red line in both figures is the result
for an initial energy of �0 ¼ 100. Figure 3(a) demonstrates
energy gain for �0 ¼ 100, but not linear energy gain
whereas Fig. 3(b) shows linear energy gain over the entire
9 mm. This is a result of the threshold energy for trapping
in a spatial harmonic,

�th ’
�
kmwch

4�a0

��
!

!p;0

�
2
: (10)

The threshold energy is the minimum energy for electrons
to gain energy linearly from the laser field. For a0 ¼ 0:1
and a0 ¼ 0:25 the thresholds are �th ¼ 183 and �th ¼ 73,
respectively: �0 ¼ 100 is below the threshold energy for
a0 ¼ 0:1, but above for a0 ¼ 0:25. Because it is below
threshold the energy gain for �0 ¼ 50 saturates for both
a0 ¼ 0:1 and a0 ¼ 0:25. The energy gain of the electrons
with initial energy above �th matches the prediction of the
scaling law given in Eq. (7). For a0 ¼ 0:25 and an inter-
action length of 9 mm, the scaling law predicts �� ’ 204,
supported by the simulation results in Fig. 3(b).

FIG. 2. On-axis longitudinal electric field (blue) and time integral of the on-axis longitudinal electric field (red) as a function of
acceleration time for a fixed � point. In (a) the modulation period matches the dephasing length, Ld ¼ 356 �m, while in (b) the
modulation period is d ¼ 350 �m. (c) Self-consistent energy gain as a function of acceleration for three different modulation periods:
350 �m, 353 �m, and 356 �m.
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To examine the dynamics of the entire beam, we con-
sider phase space densities after 9 mm of interaction for an
initial beam density. Figures 4(a) and 4(b) depict the beam
distribution as a function of final longitudinal momentum
and transverse position. In Fig. 4(a) the laser pulse ampli-
tude is a0 ¼ 0:25 and the initial electron energy �0 ¼ 100,
while in Fig. 4(b), a0 ¼ 0:1 and �0 ¼ 200. For both cases,
the initial electron energy is above the threshold energy,
�th. Figures 4(a) and 4(b) show that the beam electrons
gaining the most energy remain transversely collimated
within 5 �m of the center. However, electrons that lose
or maintain energy scatter significantly for a0 ¼ 0:25.
Because electrons are also quasi-phase-matched to the
transverse fields of the laser pulse, while there is no radial
force on axis, electrons slightly off axis can be focused or
defocused depending on their phase. Electrons starting in a
defocusing phase will be pushed outward by the phase-
matched component of the transverse electric field and will
not experience significant acceleration. Furthermore, for
radii smaller than the spot size, the transverse force in-
creases with radius: as electrons in the defocusing phase
move off axis they experience an even larger defocusing
force. Of the electrons that start in a focusing phase about
half will experience acceleration and half will experience
deceleration. This is seen in Figs. 4(a) and 4(b) as electrons
that remain collimated on axis but have energies less than

�0 ¼ 100 and �0 ¼ 200, respectively. As electrons decel-
erate they can drop below the threshold energy and begin to
phase slip into a defocusing phase with respect to the n ¼ 1
spatial harmonic resulting in a scattering of lower energy
electrons as seen in Fig. 4(a).
In addition to the transverse quasi-phase-matched force,

there are transverse forces on the beam from the space
charge of the beam, the ponderomotive force of the laser
pulse on the beam, and the electrostatic potential generated
by modification of the background electron density due to
the laser pulse and beam. The first two we can rule out: the
charge of the beams used in the simulations is 5 pC, less
than space charge limit calculated previously, 40 pC per
bunch [10]. Furthermore, the ponderomotive force on the
beam scales as Fpm / a20=�, which because of the inverse

proportionality to � is quite small. We then conclude that
the increase in transverse scattering for a0 ¼ 0:25 as
opposed to a0 ¼ 0:1 is the combination of two effects:
the quasi-phase-matched transverse force scales linearly
with the pulse amplitude, and the electrostatic forces due to
modifications in background plasma scale quadratically
with pulse amplitude. The second effect was neglected in
previous works [8,9].
The density perturbation in the background plasma is

governed by the combined linearized continuity and
momentum equations averaged over the carrier period of
the laser pulse:

FIG. 4. Transverse position-longitudinal momentum phase
space of the beam electrons after 9 mm acceleration for a
beam density nb ¼ 3:5� 1016 cm�3, (a) a0 ¼ 0:25 and �0 ¼
100, and (b) a0 ¼ 0:1 and �0 ¼ 200.

FIG. 3. Energy gain as a function of acceleration time for
different initial electron energies. Here the modulation period
is equal to the dephasing length. (a) �0 ¼ 50, 100, and 200 for
a0 ¼ 0:1 (b) �0 ¼ 30, 50, 100, and 200 for a0 ¼ 0:25.
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@2n1
@t2

þ!2
p;0n1 ¼

1

4
n0c

2r2ja0j2 �!2
p;0nb; (11)

where n0 is the averaged on-axis channel density, !p;0 is

the plasma frequency, a0 is the normalized laser vector
potential, and nb is the beam density. For very low
beam density, using the steady state approximation,
and considering a radially polarized pulse the on-axis
density perturbation is simply n1 ’ 1

16� ðrew2
chÞ�1a20, where

re is the classical electron radius. For a0 ¼ 0:1 and a0 ¼
0:25 with wch ¼ 15 �m, n1 ’ 3:2� 1014 cm�3 and n1 ’
2� 1015 cm�3, respectively. While this seems small,
it actually creates a significant electrostatic force that
pushes the beam electrons off axis. Using r2�1 ¼
4�en1 and F ¼ er�, the electrostatic force experienced
by the beam electrons is simply Fes ¼ 1

4mec
2rja0j2.

The ponderomotive force of the radially polarized pulse
pushes the background electrons towards the center of the
channel which deflects off axis beam electrons further off
axis. The electrostatic force acting alone creates an un-
stable equilibrium for small radii, for which a small radial
electron velocity will have an early time exponential

growth rate of ð2�0Þ�1=2a0w
�1
ch . For a0 ¼ 0:25 and �0 ¼

100, one e-folding occurs after 0.8 mm while for a0 ¼ 0:1
and �0 ¼ 200 the e-folding distance is 3 mm.

The deflection of the beam electrons can be abated by
considering the charge of the electron beam. The electron
beam pushes the background electrons off axis acting to
cancel the ponderomotive force of the laser pulse. From
Eq. (11) we see that the beam density required to balance
the ponderomotive pressure of the laser is nb ’ 1

8� �
ðrew2

chÞ�1a20. For wch ¼ 15 �m and a0 ¼ 0:1, this predicts
a balancing density of nb ’ 6:3� 1014 cm�3. Figures 5(a)
and 5(b) are a comparison of the transverse position,
longitudinal momentum phase space densities after 9 mm
of interaction for beam densities of nb ¼ 7� 1010 cm�3

and nb ¼ 3:5� 1016 cm�3, respectively. The maximum
energy gain for both situations is the same, but the higher
density beam has better collimation and a more monoen-
ergetic peak.
Figure 6(a) shows the total on-axis charge density

after 4.2 ps of interaction. The red line is for nb¼
7�1010 cm�3 and the blue line for nb¼3:5�1016 cm�3.
The higher density beam drives a plasma wave in the
background plasma whose associated electric field helps
to collimate the beam. The rapid oscillations in the charge
density are due to microbunching of the beam electrons at
the laser wavelength. This is a direct result of the focusing

FIG. 5. Transverse position-longitudinal momentum phase
space of the beam electrons after 9 mm acceleration for a0 ¼
0:1 and�0 ¼ 200 (a) low beam density, nb ¼ 7� 1010 cm�3,
and (b) high beam density, nb ¼ 3:5� 1016 cm�3.

FIG. 6. On-axis charge density after 4.2 ps of acceleration
with a0 ¼ 0:1. (b) Vertically magnified image of (a). The blue
line is the on-axis charge density for high beam density,
nb ¼ 3:5� 1016 cm�3, and the red line is for low beam density,
nb ¼ 7� 1010 cm�3. The black line in (b) indicates the initial
beam electron profile.
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and defocusing phases of the quasi-phase-matched trans-
verse field. Figure 6(b) is a zoomed-in version of (a) and
demonstrates the negative charge buildup on axis due to the
ponderomotive force of the laser pulse. For the low density
beam there is a negative charge buildup overlapping the
beam, while for the high density beam there are alternating
regions of positive and negative background charge, which
on average reduce the deflection of the beam. The electron
beam drives out the background electrons, so that positive
charge remains. From Fig. 5 we see that the accelerating
field was not affected by the generation of the plasma
wake. We note that another way to avoid the deflection
due to modifications in the background density is to lower
the field intensity and propagate over a longer distance.
However, lowering the field intensity increases the thresh-
old energy for trapping which may not be ideal.

Figure 7 shows the final energy spectrum of the electron
beamwithin the initial radius of the beam for three different
initial energies:�0 ¼ 100,�0 ¼ 200, and�0 ¼ 500, accel-
erated by a laser pulse with a0 ¼ 0:1. The beam electrons
are initialized monoenergetically, and the QPMA process
maintains a narrow energy spread during acceleration. The
relative energy spreads, which we define as �E=E where
�E is the full width half maximum, for gamma 100, 200,
and 500 are 5%, 4%, and 2.8%, respectively. Since the phase
velocity of the 1st spatial harmonic is set to c, the electrons
with higher initial energy will remain in phase with the
accelerating field over a longer duration. For example,
electrons with a constant energy � ¼ 100 will be 450 nm
(��L=2) delayed from an object that moves at c after 9mm
propagation. The dephasing results in more energy spread
for the lower initial energy beams.

The green curve in Fig. 7 displays the spectrumwhen the
acceleration occurs over a longer distance: 18 mm for
�0 ¼ 200. The energy spread of the peak has dropped
from 4% at 9 mm to 1.5% at 18 mm, and the energy of
the peak has increased. However, the monoenergetic peak
no longer occurs at the maximum in the spectrum. Figure 8

shows the transverse position, longitudinal momentum
phase space density after 18 mm. The beam electrons
remain collimated in the transverse direction and the
monoenergetic peak in Fig. 7 appears as the bright dot
near 330 MeV. The time evolution of the energy spectrum
appears in Fig. 9. For clarity the spectrum has been nor-
malized by the peak value at each time step. The orange
line with narrow width is the monoenergetic peak. It starts
as a very narrow peak and slowly broadens until 25 ps, and
becomes narrow again afterward.

IV. LOW ENERGY ELECTRON ACCELERATION

The electron beams simulated thus far have been ini-
tialized with relativistic speeds to ensure that the electrons
remain phase-matched to the n ¼ 1 spatial harmonic. This
is not favorable for small scale, tabletop laser accelerators
because it requires a preliminary accelerator for injection.
Thus, a method for injecting low energy electrons is critical
for the realization of QPMA as a small-scale accelerator.
The minimum energy of electrons in QPMA can be calcu-
lated via Eq. (10). To trap low energy electrons from the
beginning and accelerate them over the entire acceleration
distance requires field amplitudes for which the interaction

FIG. 7. Energy spectra of beam electrons for different initial
energies: �0 ¼ 100, 200, and 500 after 9 mm of acceleration, are
the red line, black line, and blue line, respectively, while the
green line is �0 ¼ 200 after 18 mm acceleration. In all cases the
normalized vector potential was a0 ¼ 0:1.

FIG. 8. Transverse position-longitudinal momentum phase
space of the beam electrons after 18 mm of acceleration for a
beam density, nb ¼ 3:5� 1016 cm�3, normalized vector poten-
tial a0 ¼ 0:1 and initial energy �0 ¼ 200.

FIG. 9. Energy spectrum as a function of time for nb ¼ 3:5�
1016 cm�3, a0 ¼ 0:1, and �0 ¼ 200. For clarity the spectrum is
normalized to its maximum at each time.
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between the laser pulse and background plasma becomes
nonlinear, potentially destroying the slow wave structure.
For example, to trap and accelerate electrons with �0 ¼ 20
requires a laser pulse with a relativistic amplitude, a0 ¼
0:92. Alternatively, quasi-phase-matching to low energy
electrons can be achieved by gradually ramping up the
phase velocity of the phase-matched spatial harmonic
over the interaction length. Increasing the phase velocity
can be done in several ways: increasing the electron density,
increasing themodulation period, or decreasing the channel
width. Here we investigate ramping the electron density.

We begin by analytically calculating the density ramp
required for a particular initial electron energy. We write
the density profile in terms of the plasma frequency as
follows:

!2
pðr;zÞ¼!2

p0þ!2
p1ðzÞþ�!2

p0 sinðkmzÞþ
4c2r2

w4
ch

; (12)

where the density ramp is included in the function !2
p1ðzÞ.

The total wave vector for the first spatial harmonic is

then k̂ ¼ k0 þ km þ �k� 1
2 k

�1
0 k2p1ðzÞ. The goal now is

to find an expression for k2p;1ðzÞ such that the energy

gain is linear over the interaction length. Using �� ¼
�q=mec

3
R
v � @tAdt the energy gain is

d�

dz
¼ k0â0e

i
R

k̂dz�i!0t; (13)

where we have defined â0 
 4ðk0wchÞ�1J1ðc Þa0. For

linear energy gain we require
R
k̂dz�!0t ¼ 0, which

upon differentiation with respect to z provides k̂ ¼
!0=vðzÞ. Furthermore, we can integrate Eq. (13) to find
� ¼ �0 þ â0k0z, which allows us to find vðzÞ. Putting
everything together we find the ideal density ramp for a
given initial energy is given by

k2p1ðzÞ¼2k0ðk0þkmþ�kÞ�2

� ð�0þ â0k0zÞ2
ð�0þ â0k0zÞ2�1

�
1=2

k20;

(14)

and the total wave vector for the n ¼ 1 spatial harmonic is
simply

k ¼
� ð�0 þ â0k0zÞ2
ð�0 þ â0k0zÞ2 � 1

�
1=2

k0: (15)

Care must still be taken to ensure that the total density
is not less than zero, for which a sufficient condition is
ð1� �Þk2p0 þ k2p1ðz ¼ 3�

2 Þ> 0.

Based on the analytical solution for the density ramp, we
performed 2D cylindrical PIC simulations to investigate
the trapping of low energy electrons by the laser pulse. The
simulations were conducted for electrons with initial en-
ergies of �0 ¼ 20 and �0 ¼ 50, both of which are below
the critical energy for a0 ¼ 0:1. Figure 10(a) shows the
on-axis channel density for acceleration of electrons
with �0 ¼ 20. The value of n0 is 2:3� 1019 cm�3 an

increase over the value used in the previous simulations,
7� 1018 cm�3. Accordingly, the modulation period is
reduced to 117 �m to meet the positivity condition on
the density. Note the gradual increase of the averaged
density over the propagation distance. In Fig. 10(b) a
comparison of the energy gain of electrons with �0 ¼ 20
with (blue) and without (red) the density ramp is displayed.
As before, the energy gains displayed are those of electrons
having the largest energy gain of all the electrons. The
figure demonstrates a clear improvement of trapping elec-
trons with below threshold energy in the presence of a
density ramp. The energy gain slows down after 22 ps of
interaction, because the electrons have outrun the laser
pulse: the increase in average channel density decreased
the group velocity of the laser pulse. The energy gain
of electrons with �0 ¼ 10 (black) is also displayed in
Fig. 10(b). For electrons with �0 ¼ 10, the same parame-
ters for the laser and the channel were used except the laser
pulse duration was increased to 600 fs, since higher density
ramp is required for �0 ¼ 10 than �0 ¼ 20, which makes
the group velocity of the laser pulse slower. While more
simulations are needed to examine the robustness of the
density ramp, these results show that in principle structur-
ing the plasma density can aid in the acceleration of low
energy electrons.

FIG. 10. (a) On-axis electron density for a plasma waveguide
with a density ramp. The ramp allows trapping of lower energy
electrons in this case �0 ¼ 20 for a normalized vector potential
of a0 ¼ 0:1. (b) Energy gain of �0 ¼ 20 electrons with (blue)
and without (red) the density ramp pictured in (a). The energy
gain of �0 ¼ 10 electrons is the black line in (b).
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V. SUMMARYAND CONCLUSIONS

In summary, this work examines QPMA in a corrugated
plasma waveguide with fully self-consistent 2D, cylindri-
cal PIC simulations. The PIC code TURBOWAVE was
validated by verifying the existence of spatial harmonics
created by density modulations in the plasma channel.
Fourier transforming the laser field yielded axial
harmonics whose amplitude ratios matched analytic
calculations. The local phase of the field was extracted
and found to follow the density modulations as
expected.

The simulations demonstrate linear acceleration of
electrons by the phase-matched longitudinal electric field.
The simulated acceleration gradients were�110 MeV=cm
for a0 ¼ 0:25 and �50 MeV=cm for a0 ¼ 0:1, matching
well with analytic predictions. Simulations also corrobo-
rated that a threshold energy exists for the trapping
and linear energy gain of electrons in a spatial harmonic.
Energy spectra of accelerated electron exhibited
monoenergetic peaks (�E=E � 3%–5%) depending on
the initial energy of the electron beam and acceleration
distance. �E=E remains more less constant over 1.8 cm
interaction.

The simulations revealed that the ponderomotive force
due to the laser field plays a role in deflecting electrons in
the accelerating phase, a result neglected in previous work
[7]. The ponderomotive force of the transverse field
pushes plasma channel electrons towards the axis. The
resulting transverse electrostatic field defocuses the elec-
tron beam. This effect becomes more deleterious at higher
pump intensity due to the increase in ponderomotive
force. The defocusing was successfully mitigated by in-
creasing the charge of the electron beam. With higher
beam charge, the electron beam pushes the plasma chan-
nel electrons off axis counteracting the laser ponderomo-
tive force.

We extended our basic model of QPMA for highly
relativistic electrons to the phase-matching of lower energy
electrons. An electron density ramp was used to slowly
increase the phase velocity of the phase-matched spatial
harmonic over the interaction length. An analytic expres-
sion for an ideal density ramp was determined and imple-
mented in the PIC simulations. Simulations with the
density-ramped modulated waveguides showed trapping
of electrons with �0 ¼ 20 at a pump intensity of a0 ¼
0:1. No electron energy gain was seen without the density
ramp. Alternative methods for accelerating low energy
electrons include increasing the modulation period or nar-
rowing the channel over the interaction length. These will
be topics of future study.
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