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Calculations are performed of the phase shift caused by the spatial modulation in the plasma density due to inter-
ference between a strong pump pulse and a weak probe pulse. It is suggested that a recent experiment [Opt. Express
17, 13429 (2009)] observed an effective birefringence from this plasma grating rather than from the higher-order Kerr
effect. © 2011 Optical Society of America
OCIS codes: 320.7100, 190.4380, 190.7110.

Recently, a saturating, then negative induced birefrin-
gence was measured at high intensities in Ar, N2, and
O2 gas [1–3]. It was interpreted as the saturation followed
by sign change of the instantaneous nonlinear response,
and was described by using higher-order terms in a series
expansion of the nonlinear refractive index. This has led
to a slew of theoretical papers discussing the conse-
quences of the higher-order Kerr effect (HOKE), specifi-
cally a strong negative nonlinear refractive index below
the ionization threshold [4–7]. Many experiments have
since investigated HOKE, mostly concentrating on its ef-
fects on phenomena such as filamentation, harmonic
generation, and conical emission [8–14]. A recent mea-
surement of the nonlinearity using spectral interferome-
try showed no sign of HOKE up to and beyond the
ionization threshold [15], in disagreement with the results
of [1–3]. Here, a possible source of the discrepancy be-
tween these two experiments is described. We find that
when the pump intensity is near the ionization threshold,
a refractive index grating formed by the interference of
degenerate pump and probe beams produces a negative
phase shift in the probe pulse, and can effectively act as a
birefringent medium.
In the pump–probe transient birefringence experiment

considered [1–3], a strong pump beam and a weak probe
beam, both linearly polarized, are focused in a gas cell,
crossing at a 4° angle. The relative angle between the po-
larization of the pump and probe is 45°, and the transient
birefringence is measured using an analyzer oriented to
block the probe in the absence of a birefringence. The
heterodyne signal, measured by adding and subtracting
a small birefringence using a static phase plate [1], is lin-
ear in the birefringence induced in the medium by the
pump. The optical Kerr effect produces a birefringence
because, in an isotropic medium, the Kerr coefficient
is 3 times as large for the probe polarization parallel
to the pump polarization as it is for the perpendicular
component. It had been assumed that plasma, because
it produces a change in refractive index that is isotropic,
cannot produce a birefringence [1,2].
Here we show that the plasma grating created due to

interference between pump and probe beams can pro-
duce an effective birefringence that appears only when
the pump and probe pulses overlap in time.
For incident pump and probe fields Eeðr; tÞ ¼
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The probe propagation direction is taken to be ẑ. For
Ne ≪ Nc, the plasma contribution to the refractive
index is approximated as Δnplðr; tÞ ¼ −Neðr; tÞ=ð2NcÞ,
where Neðr; tÞ is the free electron density and Nc is
the critical density. In the intensity range studied in
[1], multiphoton absorption determines the rate at
which free electrons are generated: _Ne ¼ σmImðtÞN0,
where σm is the cross section for m-photon absorption
and N0 is the ambient gas density. The precise value
of the exponent m is not important for the conclusions
drawn later—in the calculations we assume m ¼ 8,
which has been used previously for air for pulses
centered at 800 nm in this intensity regime [16]. The
ionization rate is, in the limit of a weak probe
beam, _Neðr; tÞ ¼ _Ns

eðr; tÞ þ _Ng
eðr; tÞ, where _Ns
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where the superscripts s and g refer to “smooth” and
“grating.” The interference between pump and probe
beams causes a spatial modulation (grating) in the plas-
ma density. A plasma grating has been shown to enable
energy exchange between femtosecond laser filaments
[17]—here we find it contributes a phase shift to the po-
larization component of the probe beam parallel to the
pump polarization.

The smooth and grating parts of the refractive index
change due to the plasma are

Δnplðr; tÞ ¼ Δns
plðr; tÞ þ ½Δng
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Using an instantaneous Kerr nonlinearity n2 for Ar, the
change in refractive index due to the Kerr effect is
ΔnKðr; tÞ ¼ n2Iðr; tÞ. In analogy with the discussion
above, the refractive index change due to the Kerr effect
isΔnKðr;tÞ¼Δns

Kðr;tÞþ½Δng
Kðr;tÞeiðkp−keÞ·rþc:c:', where

Δns
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When the pulse envelope changes slowly compared to an
optical cycle, as is the case here, one can write D ¼ n2E,
and we use n2

≈ n2
0 þ 2n0ðΔnpl þΔnKÞ for small index

shifts. The refractive index is a function of time due to
the plasma and Kerr contributions to n. We define the
following to enable full normalization of the propagation
equation: Ie ¼ Ie0f ðr; tÞ, where f is an intensity envelope
function, Ee ¼ Ee0f 1=2, Ep ¼ Ep0f 1=2, Δns

K ¼ ΔnK0f ,
ΔnK0 ¼ n2Ie0, z0 ¼ kpΔnK0z, τ0 ¼ ωt − z0, Δnpl;0 ¼
−σmN0Ime0tw=ð2NcÞ, u ¼ t=tw, ud ¼ td=tw, ξ ¼ Δnpl;0=
ΔnK0, and δ ¼ Ep0=Ee0. Here kp ¼ ωn0=c and tw is a char-
acteristic pump–probe pulse duration. As seen later, the
probe phase shift per unit length of propagation is en-
tirely determined by ξ, the characteristic ratio of plasma
to Kerr response.
Employing the above definitions plus the slowly vary-

ing envelope and paraxial approximations, we get, for the
j ¼ x, y field components propagating in the direction of
the probe kp,
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The first two terms in Eq. (7), containing sj , give the

direct effect on the probe beam of the “smooth” part
of the refractive index. The plasma contributes equally
to both polarizations because its response is isotropic.
The third and fourth terms, containing gj, arise from co-
herent scattering (diffraction) of the pump pulse into the
kp direction by the Kerr and plasma gratings, which af-
fects both the phase and amplitude of the probe field.
The effect of the Kerr grating is implicitly taken into ac-
count by the cross phase modulation Kerr coefficient,
and the same would apply for a higher-order Kerr effect
[2]. But the phase shift imparted by the plasma grating

has, to our knowledge, not been considered, at least in
this context. The appearance of a grating term for the
Kerr nonlinearity when the pump and probe are perpen-
dicular is due to off-diagonal elements in the χ ð3Þ tensor.
A plasma grating, however, is generated only when the
pump and probe pulses interfere; there must be some
polarization overlap.

To solve Eq. (7), we neglect energy transfer due to two-
beam coupling [18–20] and concentrate on the phase
shift imparted to the probe per unit interaction length.
We neglect the time derivative terms in Eq. (7): they pro-
duce no probe phase shift to first order and are, in any
case, small for 90 fs pulses. We note that the pump–probe
crossing angle enters the calculation only through z0. The
result is ∂Ej=∂z0 ¼ iβjðuÞEp, where βy ¼ sy þ f =3 and
βx ¼ 2f þ ξ½vðuÞ þmhðu; udÞf 1=2ðuÞf −1=2ðu − udÞ'.

The phase shift per unit length of propagation of an x̂-
polarized probe ðβxðtÞÞ and a ŷ-polarized probe (βyðtÞ)
are plotted versus pump–probe delay td in Fig. 1(a).
We assume 90 fs Gaussian pulses (f ðuÞ ¼ expð−u2Þ)
and m ¼ 8. Note that these results are independent of
the pump–probe crossing angle. For these curves, we
turned off the Kerr response to highlight the effective bi-
refringence of the plasma grating, which contributes only
during pump–probe temporal overlap and for parallel po-
larizations. The peak phase shift due to the grating is a
factor of ∼m=2 larger than the “smooth” plasma signal
at td ≫ tw. Consistent with our normalized expressions,
the phase shift is independent of δ ¼ Ep0=Ee0 until the
probe intensity is comparable with the pump intensity,

Fig. 1. Simulated normalized signal in a transient birefrin-
gence pump–probe experiment near the ionization threshold.
(a) Effect of plasma grating: phase shift per unit interaction
length for the component of the probe beam polarized parallel
(solid curve) and perpendicular (dashed curve) to the pump
polarization. The dotted curve shows the pulse envelope.
(b) Transient birefringence at Δnpl;0=ΔnK0 ¼ −3:8 × 10−2 (thin
solid curve), −0:19 (dashed curve), −0:35 (dotted curve), −0:54
(dashed–dotted curve), and −1:1 (thick solid curve).
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whereupon our perturbation treatment fails in any case.
The physical reason for this is that the pump scattering
into the kp direction is proportional to the grating mod-
ulation depth, which for a weak probe is proportional
to Ep.
In the heterodyne experiment of [1], the signal SðtdÞ is

the probe retardance (the difference in phase shifts of
the perpendicular polarization components) weighted
by the probe pulse envelope. We simulate this as
SðtdÞ ∝

R
∞

−∞

ðβxðtÞ − βyðtÞÞIpðt; tdÞdt. Results of this calcu-
lation are plotted in Fig. 1(b) for a range of values of the
plasma to Kerr response ratio, ξ ¼ Δnpl;0=ΔnK0 ¼
−3:8 × 10−2, −0:19, −0:35, −0:54, and −1:1. For jξj < −

3:8 × 10−2, the positive Kerr signal dominates. As jξj
increases beyond this point, the plasma grating begins
to contribute and the Kerr effect appears to saturate.
At ξ ¼ −0:54, the plasma grating pushes the signal nega-
tive for td ≈ 0. The Kerr component of the signal, because
it is a convolution of the pump and probe pulse shapes, is
wider in time than the plasma grating signal. This leads to
positive wings in an intensity range that contains a strong
negative peak, as seen here and in the Loriot et al. results
(see Fig. 7 in [2]). At ξ ¼ −1:1, the plasma grating
dominates.
To compare our simulations directly to the results of

Loriot et al. [1], we evaluate ξ for their conditions. From
[1],weusen2 ¼ 3 × 10−19 cm2=W, Ie0 ¼ 1−22TW=cm2 (the
low end of their pump intensity range), tw ¼ 54 fs (corre-
sponding to 90 fs FWHM Gaussian, Nc ¼ 1:7 × 1021 cm−3

(at 800 nm), ambient gas density N0 ¼ 2:7 × 1018 cm−3,
m ¼ 8, and σ8 ∼ 3:7 × 10−96 cm16=W8=s [16]. Over
1−22TW=cm2, ξ ranges from −5 × 10−10 to −1:3, overlap-
ping the full range of our curves plotted in Fig. 1(b).
When the pump and probe pulses have very different

carrier frequencies, the ionization rate oscillates in time
as well as in space. Because the plasma density accumu-
lates over the pulse, the spatial grating, and thus the co-
herent signal from the plasma, is suppressed. This is why
the plasma grating effect is not observed when a nonde-
generate probe is used [15,21]. These calculations show
that the zero time delay signal in transient birefringence
measurements cannot be assumed to arise from the Kerr
effect alone when the pump intensity is near the ioniza-
tion threshold. In particular, they cast new doubt on the
HOKE-based interpretation of experiments [1–3], parti-
cularly when the body of evidence from other experi-
ments is also considered [8–15,21]. Finally, we note
that the grating effect associated with a delayed nonli-
nearity is present in other experimental techniques that
are sensitive to the probe phase shift, such as cross
defocusing [21,22] and 4f coherent imaging [23].
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