
Direct Acceleration of Electrons in a Corrugated Plasma Waveguide

A. G. York* and H. M. Milchberg
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA

J. P. Palastro and T. M. Antonsen
Instititue for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA

(Received 15 August 2007; published 14 May 2008)

Historically, direct acceleration of charged particles by electromagnetic fields has been limited by
diffraction, phase matching, and material damage thresholds. A recently developed plasma micro-optic
[B. Layer et al., Phys. Rev. Lett. 99, 035001 (2007)] removes these limitations and promises to allow high-
field acceleration of electrons over many centimeters using relatively small femtosecond lasers. We
present simulations that show a laser pulse power of 1.9 TW should allow an acceleration gradient larger
than 80 MV=cm. A modest power of only 30 GW would still allow acceleration gradients in excess of
10 MV=cm.
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Laser wakefield acceleration [1] of electrons to relativ-
istic velocities is often described as a ‘‘tabletop’’ technol-
ogy, promising to make high-energy electrons accessible to
small labs and hospitals. Wakefield acceleration, however,
typically requires multi-terawatt laser systems that literally
stretch the definition of ‘‘table.‘‘ Direct laser acceleration
[2] offers an attractive alternative for producing fast elec-
trons. Unlike wakefield acceleration, direct laser accelera-
tion is a linear process with no threshold intensity. Typical
few-mJ chirped-pulse regenerative amplifiers that could
never reach the intensity threshold for wakefield accelera-
tion could still be used for direct laser acceleration.

A wide variety of arrangements have been used to en-
able the exchange of energy between radiation and relativ-
istic electrons, from a multi-kilometer-long microwave-
frequency copper waveguide [3], to a hydrogen gas irradi-
ated by a conically-focused, radially-polarized CO2 laser
[4], to a metal tape positioned at the focus of a picosecond
laser [5]. While the efficiency and expense of these
schemes varies greatly, the electron acceleration gradients
they can achieve are ultimately limited by the field strength
they can produce and control, typically less than
1 MV=cm. Modern femtosecond lasers based on chirped-
pulse amplification [6] can produce focused field strengths
in excess of 10 GV=cm. An accelerating structure which
could control such fields would allow enormous accelera-
tion gradients, but no material can survive this intensity
unionized. We therefore consider an accelerating structure
which is already ionized: the recently demonstrated corru-
gated plasma waveguide [7], described in Fig. 1. We show
that in this structure, a laser pulse power of 1.9 TW gives
an acceleration gradient of 84 MV=cm, and only 30 GW
still gives an acceleration gradient of 10:6 MV=cm.

The use of uncorrugated plasma waveguides [8] for
direct electromagnetic acceleration has been suggested
by Serafim et al. [9], who proposed guiding a radially
polarized laser pulse to accelerate a copropagating relativ-
istic electron bunch. The laser’s dominant radial compo-

nent Er guides as a hollow mode with peak intensity at
r � wch=

���
2
p

, where the mode radius wch is given by wch �

�1=�re�Ne�
1=2, re is the classical electron radius and �Ne

is the electron density difference between r � 0 and r �
wch. The accelerating field is the associated axial compo-
nent Ez, which peaks at r � 0 and passes through zero at
r � wch. Following reference [9], the peak axial
acceleration gradient from hollow beam guiding in a
plasma channel is given by E �GV=cm� � 98�P1=2=wch

2,
where � (laser wavelength) and wch are in�m, and P is the
peak laser power in TW. For a 1.9 TW laser pulse with � �
800 nm in a channel supporting wch � 15 �m, Ez is an

FIG. 1 (color online). Direct acceleration of electrons by a
femtosecond laser pulse in a corrugated plasma waveguide.
(a) A radially-modulated Nd:YAG laser pulse focused by an
axicon onto a gas jet creates a spark several centimeters long
with micron-scale structure. Over nanoseconds, this spark ex-
pands into (b) a hollow optical waveguide with corrugations in
the guiding direction, allowing fine velocity control of guided
radiation [7]. (c) A radially polarized femtosecond laser pulse
and a relativistic electron bunch are injected into this waveguide.
If the corrugation period is matched to Ld, the laser pulse can
accelerate these electrons.
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impressive 0:49 GV=cm. If there were no slippage be-
tween the laser phase velocity and the electron velocity
(essentially c), this would compare very favorably to laser
wakefield acceleration: Malka et al. used a 30 TW laser to
produce an acceleration gradient of 0:66 GV=cm (200 MV
over 3 mm) [1]. A regenerative amplifier with 1 mJ output
can easily produce 20 GW peak power, giving a
49 MV=cm gradient. Of course, a means must be found
to slow the laser phase velocity to c or less to match the
relativistic electron velocity. Neutral gas as proposed in [9]
will not survive the laser intensities essential for high
values of accelerating field Ez; even pulses well below
the terawatt level will propagate in fully ionized wave-
guides. Without neutral gas, the laser phase velocity in an
uncorrugated plasma waveguide is strictly superluminal: a
relativistic electron would slip 2� out of phase with the
accelerating pulse after propagating a dephasing length
Ld � ��N0=Ncr � 2�2=�2w2

ch�
�1 [10], where N0 is the

on-axis plasma electron density of the channel and Ncr is
the critical plasma density. The electron receives no net
acceleration: acceleration over Ld=2 would be cancelled
by deceleration over the next Ld=2.

The corrugated plasma waveguide shown in Fig. 1(b)
can quasi-phasematch (QPM) this interaction. Laser phase
velocity is locally faster in high plasma-density regions and
slower in low plasma density. If Ld and the corrugation
period are matched, the symmetry between acceleration
and deceleration in a dephasing cycle is broken, and a
properly phased electron will gain net energy; this process
can be viewed as the inverse of transition radiation [11].

We obtain physical insight into the QPM process from
finite-difference time-domain simulations of linear pulse
propagation in the simplified plasma density shown in
Fig. 2(a). This simulation performed using a freely avail-
able software package with subpixel smoothing for in-
creased accuracy [12] assumes cylindrical symmetry, and
includes plasma dispersion, finite pulse duration, and pulse
leakage out of the channel. Finite computing resources
force us to use an unrealistically long wavelength of
6:4 �m, so the waveguide density was scaled to make
the laser phase velocity comparable to experimental con-
ditions. Figure 2(b) shows the relative longitudinal and 2(c)
the transverse electric field (scaled for visibility) felt by a
relativistic (vz � c) electron copropagating with the laser
pulse nearly on axis. The channel’s corrugation period is
matched to Ld, and the initial phase between the electron
and the laser field is chosen so that the electron is accel-
erated in the low-density section of each corrugation.
Phase velocity is lower in these regions, so dephasing is
slower and the electron spends more than half of each Ld in
phase with the accelerating field. Each oscillation in 2(b)
represents one dephasing cycle, and the number at each
half-cycle is proportional to the energy gained or lost by
the electron in that region. The electron clearly gains more
energy during acceleration than it loses during decelera-

tion. The transverse electric field shown in 2(c) is similarly
QPM’d, which contributes to a net radial focusing or
defocusing force. The laser group velocity is subluminal;
the electron starts behind the laser pulse and overtakes it.
This ‘‘pulse length dephasing’’ limits the interaction
length. Leakage of the laser pulse out of the waveguide is
minimal, and plasma dispersion does not interfere with
acceleration.

Starting from these encouraging results, we introduce an
analytic model neglecting leakage and dispersion (which
are less pronounced for a shorter wavelength) in order to
study more realistic parameters. We start with the radial
component of the laser vector potential:

 Ar � Âr�r; z; t� exp�{�k0z�!0t�� � c:c: (1)

where k0 and !0 are the central wave number and fre-
quency of the laser pulse, respectively, and Âr�r; z; t� is a
slowly varying envelope. We assume the pulse is azimu-
thally symmetric and consider plasma channels with low
electron densities such that the plasma frequency satisfies
!p � !0. In this regime, the envelope Âr evolves on a
time scale much longer than the laser period. The slowly
varying envelope equation then determines the evolution of
the laser pulse:
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Âr �

!2
p�r; z�

c2 Âr

(2)

where !0 � k0c, and we have assumed that the electron
plasma responds as a linear nonrelativistic cold fluid.
Because the laser-electron dephasing length Ld depends
on the electron’s velocity [10], acceleration of subrelativ-
istic electrons would require a structure with a graded
modulation period to ensure Ld remains matched to the
modulations over the entire interaction length. For mathe-
matical simplicity, we consider a fixed modulation period,

FIG. 2 (color online). We approximate the plasma waveguide
shown in Fig. 1(b) with (a) a simple electron density profile to
model laser pulse propagation and electron acceleration. FDTD
simulation results show accelerating (b) and focusing (c) forces
felt by a properly phased relativistic (v � c) electron copropa-
gating with a femtosecond laser pulse. Several acceleration and
deceleration half-dephasing cycles in (b) are labeled to show the
work done on the electron in that region, with acceleration
clearly dominating. The focusing force (c) is similarly QPM’d
for this electron, to a lesser degree.
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suited to acceleration of electrons with �	 1. We
limit our analysis to a periodic electron density profile
that models Fig. 2(a), Ne�r; z� � N0�1� � sin�kmz�� �
N000 r

2=2, where � is the relative amplitude of the density
modulation, N000 determines the radial dependence, and km
is the wave number describing the axial periodicity of the
channel. Exact solutions to Eq. (2) which satisfy appropri-
ate boundary conditions exist for this profile, which sim-
plifies analysis of electron beam dynamics. Once Ar has
been determined, Az and the axial electric field can be
determined by ~r 
 ~A � 0, which is consistent with !p �

!0. The slowly varying envelope approximation neglects
second derivatives in z and t in the wave equation which
are responsible for subluminal group velocity, but the
group velocity can be explicitly restored by replacing
c�1@=@t with v�1

g @=@t in Eq. (2). Here, vg � 1�

!2
p;0=2!2 � 4=�k0wch�

2, and we define !2
p;0 �

h!2
p�0; z�iz, where the brackets represent an average over

z. Assuming Gaussian temporal dependence, the lowest
eigenmode solution of Eq. (2) is
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where Jn� � is the nth order Bessel function,  �
�!2

p;0=2c2k0km, and �k � �k�1
0 �!

2
p;0=2c2 � 4=w2

ch�.
This is a sum of axial spatial harmonics of relative ampli-
tude Jn� �.

Matching the corrugation period to Ld is equivalent to
matching the phase velocity of a spatial harmonic to the
electron velocity. The effective phase velocity vp;n for the
nth harmonic is vp;n=c � 1� nkm=k0 �!

2
p;0=2!2 �

4=�k0wch�
2, where an appropriate choice of n and km gives

a ‘‘slow wave‘‘ harmonic (vp < c) necessary for electron
acceleration.

To determine a scaling law for direct electron accelera-
tion, we consider an electron with initial conditions
�r; vr� � �0; 0�, and �z; vz� � �z0; vz;0�, where vz;0 is as-
sumed to be close enough to c such that the electron
remains in the accelerating phase of the QPM field over
the process of acceleration. For our experimental condi-
tions of �!p;0=!0�

2�k0=km� � 1 [7,8], � 1 and Jn� � 
 n=2nn!. The amplitude of the harmonics decreases
quickly with n, so we focus on n � 1 and set vp;1 � vz;0.
Choosing z0 to optimize acceleration and integrating the
axial electric field over the pulse length dephasing time
�z=�vg � vz;0� using vz;0 � c, we obtain for the energy
gain
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where �p � 2�c=!p;0. The pulse length dephasing time
limits the interaction length. By comparison, the

dephasing-limited energy gain for resonant laser-wakefield
acceleration is [13]
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For a wavelength � � 800 nm, matched beam radius
wch � 15 �m, normalized amplitude a0 � 0:25 corre-
sponding to a laser power of 1.9 TW, pulse length �z=c �
300 fs, on axis plasma density N0 � 7� 1018 cm�3, cor-
rugation amplitude � � 0:9, and modulation period of
Tm � 349 �m (we use these parameters in our following
calculations), we have �E=mc2jDA  1000. In [13], a
7.16 TW, 100 fs pulse in a suitable plasma channel gives
�E=mc2jWF  750, a slightly reduced acceleration with
similar pulse energy. However, it is with smaller lasers that
direct acceleration (a linear process) has its strongest ad-
vantage: replacing 1.9 TW with 30 GW would still give
�E=mc2jDA  125, whereas (extremely nonlinear) wake-
field acceleration is inoperable with such small lasers.

To study electron beam dynamics, we integrate the
relativistic electron equations of motion in the laser elec-
tromagnetic field determined by Eqs. (1) and (3). We
neglect space-charge effects, which become important
when the axial electric field due to the bunched beam
current becomes comparable to the QPM accelerating
field. We estimate this gives an upper limit on the beam
current of Imax�A�< 1:7� 104a0J1� �wch=�, which for
our parameters is 3� 104A, or 40 pC per microbunch.

Figures 3(a) and 3(b) show maximum particle energy
gain versus time. The pulse length dephasing time for this
simulation is 130 ps. In Fig. 3(a), the effective phase
velocity of the n � 1 harmonic is matched to three differ-
ent initial electron velocities by tuning the modulation
period, which could be accomplished experimentally by
inserting imaging optics in the channel formation beam
shown in Fig. 1 [7]. In Fig. 3(b), the phase velocity of the
n � 1 harmonic was set to c for all three initial electron
energies. The lines labeled ‘‘scaling’’ give the maximum
energy gain based on the amplitude of the n � 1 compo-
nent. Clearly, it is better to have electrons ‘‘catch up’’ to a
slightly faster wave than for them to be initially resonant
with but eventually overtake a slower one.

An electron displaced from the axis will experience two
types of transverse force. The first type is a QPM focusing
or defocusing due to the slow wave spatial harmonic. For
an electron near the peak of the pulse and slightly off axis
(r� wch), this force is

 Fsw
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For electrons distributed uniformly over several wave-
lengths in z, equal numbers will experience focusing and
defocusing from the QPM fields. The QPM radial force is

PRL 100, 195001 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
16 MAY 2008

195001-3



90� out of phase with the corresponding axial force, so the
focusing and defocusing force vanishes for particles in the
maximum accelerating phase. The second force is the
ponderomotive force on the electrons from the n � 0
fundamental laser mode:
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which is obtained by linearizing the equations of motion
about vz � vz;0 and averaging over the fast time scale
kmvz. Because the mode fields peak off axis, this force
focuses regardless of initial electron phase. Generally, the
peak QPM force exceeds the ponderomotive force, except
in the maximum accelerating phase for which the radial
QPM force vanishes. To examine transverse dynamics, we
distribute electrons uniformly in z from 1 �m to 11 �m
behind the pulse maximum and with a Gaussian distribu-
tion in r with width �r. Figures 3(c) and 3(d) show the
number-averaged final z momentum as a function of initial
and final position, respectively, for an initial electron beam
radius of 9 �m. Efficiency is very injector-dependent: to
be accelerated, electrons must start in ‘‘buckets’’ one half
of a slow wavelength long and less than one laser spot size
wide; for our parameters, the space charge limit per bucket
is <40 pC. Figure 3(e) shows the final electron beam
density as a function of position; the beam has acquired a
significant transverse spread which peaks off axis.

Comparing Figs. 3(d) and 3(e), we see that these peaks
are mostly composed of lower energy electrons that have
been expelled from the center of the buckets. All these
effects can be clearly seen in a multimedia file [14], which
shows the time evolution of a subset of the particles from
Figs. 3(c) and 3(d) in a window moving to the right at � �
100. QPM focusing and defocusing buckets, accelerating
and decelerating buckets, and slow electron dephasing/
rephasing are all evident. The particle bunch is longer
than one accelerating ‘‘bucket’’; some electrons are decel-
erated and some are defocused. Electrons that do not
accelerate slip into a defocusing region and are ejected
from the waveguide. The highest-energy electrons simply
plow ahead while absorbing energy, largely unaffected by
transverse forces, and gain 151 MeV over 1.8 cm, a gra-
dient of 84 MeV=cm. A 40 pC bucket would absorb about
6 mJ of energy, 1% of the driving pulse, while the
number of loaded buckets depends on the injector. Since
this acceleration process is linear and scales with the
square root of laser power, a laser power of only 30 GW
would give a respectable gradient of 10:6 MV=cm. Further
details of the calculation presented here can be found in
Ref. [15].
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FIG. 3 (color online). (a) Energy gain vs time with the slow
wave phase velocity matched to the initial electron velocity, and
(b) the slow wave velocity is set to c. Allowing the electrons to
catch up to the slow wave velocity reduces the dephasing due to
acceleration at higher energies. (c) Average final z momentum as
a function of initial position (z0, x0). (d) Average final z mo-
mentum as a function of final position (zf, xf) relative to the
leading electron. (e) Final electron density as a function of final
position (zf, xf). The electron beam has become bunched and
focused.
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